REFERENCES


Kantro, D.L., Cement, Concrete and Aggregates,2,2,95 (1980).


Hsu, K – C., Chiu, J-J., Chen, S-D., Tseng, T-C., ‘Effect of Addition Time of a Superplasticizer on Cement Absorption and on Concrete Workability’, *Cement


Yurugi, M., Mizobuchi, T., Terauchi, T. ‘Utilization of Blast-Furnace Slag and Silica Fume for controlling Temperature Rise in High-Strength Concrete’,


James, R.M., Mark, G.A., ‘Marine Exposure of Concrete under Selected South African Countries’, *ACI SP 163, Farmington Hills*, pp. 201-204.

Osborne, G.J., 'Effectiveness of Blast Furnace and Glassified Slag in Reducing Ingress of Chloriae ions in to Portland Cement Concrete in Marine


Fly Ash Concrete Technology', Seventh Intl. Conf. on Fly ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Malhotra, V.M. (Ed.), (Madras), India, pp. 343-359.


[82] Raymundo, R-V, 'Effect of High – Temperature Curing on the Compressive Strength of Concrete Incorporating Large Volumes of Fly Ash.', Seventh Intl. Conf. on Fly ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Malhotra, V.M. (Ed.), (Madras), India, pp. 497 – 520.


[86] Balaguru, P. 'Properties of Normal and High – Strength Concrete Containing Melakaolin', Seventh Intl. Conf. on Fly ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Malhotra, V.M. (Ed.), (Madras), India, pp. 737-756.


(Madras), India., Supplementary Papers, pp. 125-139.


[100] Chappuis, R., ‘Rheological Measurements with Cement Pastes in Viscometers: A Comprehensive Approach’ First Intl. Conf. on Rheology of Fresh Cement and Concrete, Univ. of Liverpool (U.K.), March 1990 and Published by E. & F.N. Spon Ltd, pp.3-12

324


139 Hormung, F., 'The Use of the Brabender Viscometer to Study the Consistency of Fresh Mortar by Two-point Tests', *First Int'l. Conf. on Rheology of Fresh Cement and Concrete, Univ. of Liverpool (U.K.), March 1990*, E. & F.N. Spon Ltd, pp. 227-237.


141 Banfill, P.F.G., 'Feasibility Study of a Coaxial Cylinders Viscometer for Mortar'.

142 Vogel, R., Vogel, G. E., Research Report of Laboratory for Flow and Bulk Engineering, Germany, 2004, 10pp,


149 Cabrera, J.G., and Hopkins, C.J., 'A Modification of the Tattersall Two-point Test Apparatus for Measuring Concrete Workability', *Magazine of Concrete Research*


330


331


[197] Siddique, R., 'Compressive Stress-Strain Characteristics of Fibre Reinforced High Fly Ash Concrete,' *Jl.of Indian National Group of the Intl. Association for Bridge & Structural Engineers, The Bridge And Structural Engineer*, New Delhi, India, pp.1-12.


[202] Kankam, C.K., 'The Influence of Palm Kernel Fibers On Crack Development in


[237] Ramakrishna, G., Sundararajan , T., ‘Effect of GGBFS on the Strength of Coir Fibre Reinforced Mortar’, Intl. Conf. on Non-Conventional Materials and

335


[315] Schilderman, T., ‘From Research to Dissemination of Fibre Concrete Roofing Technology,’ *Proc. of Second Intl. Symp. of RILEM on Vegetable Plants and their Fibres As Building Materials Sobral, H.S. (Ed.), Salvador, Brazil*, Sep. 17-
Carbrera, J.G., Nwubani, S.O., ‘Experimental Methods for the Preparation of Palm Fruit and other Natural Fibres For Use In Reinforced Cement Composites,’


Silva,F.A., Ghavami,K., Moraes d’Almeila,J.R., ‘Interfacial Transition Zone in Fiber Reinforced Cement-Based Composites’, *Brazil NOCMAT 2004,


[358] IS: 1727 – 1999, Methods of Test for Pozzolanic Materials, BIS, India


IS: 2720 (Part XXVI) – 1987, 'Methods of Test for Soils – Part XXVI: Determination of pH Value ', BIS, India


IS: 2250 – 1982, 'Code of Practice for Preparation and Use of Masonry Mortars', *Bureau of Indian Standards (BIS), New Delhi, India.*


Balaguru, P.N. and Shah, S.P., 'Fibre Reinforced Cement Composites', Mc


