List of Figures

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Figure Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic drawing of friction stir welding (Mishra and Ma, 2005)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Different regions of conventional FSW joint (Mahoney et al., 1998)</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Torque and peak temperature variation for underwater and air welds for various rotational speed (Upadhyay and Reynolds, 2010)</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Fracture features of the optimal FSW joints: (a and b) fracture locations of the optimal normal and underwater joints, (c and d) fracture surfaces of the optimal normal and underwater joints (Zhang and Liu, 2013)</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Fixture assembly</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Tool design</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental plan</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Milling machine specification</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Dimensions of tensile specimen as per ASTM E8M-04 standard</td>
<td>41</td>
</tr>
<tr>
<td>3.6</td>
<td>Effect of immersed FSW parameters on tensile strength: 3D surface graph (a) welding speed and rotational speed (b) rotational speed and shoulder diameter (c) shoulder diameter and welding speed</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Photograph showing crown appearance of welded joint with different welding conditions in immersed FSW using 17 mm shoulder diameter and 1000 rpm rotational speed (a) 80 mm/min (b) 100 mm/min</td>
<td>48</td>
</tr>
<tr>
<td>3.8</td>
<td>Macrographs of welded joint with different welding conditions in immersed FSW using 17 mm shoulder diameter (a) rotational speed of 710 rpm and welding speed of 125 mm/min (b) rotational speed of 1400 rpm and welding speed of 80 mm/min</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Grey relational analysis to optimize the process with multiple performance characteristics (Patel et al., 2010)</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage contributions of process parameters on grey relational grade</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of welding parameters on grey relational grade</td>
<td>60</td>
</tr>
<tr>
<td>5.1</td>
<td>Thermocouple placement in the weld plate in air and immersed FSW</td>
<td>64</td>
</tr>
<tr>
<td>5.2</td>
<td>Variation of temperature with time at 6 mm away from weld line in air</td>
<td>65</td>
</tr>
</tbody>
</table>
5.3 Variation of temperature with time at 6 mm away from weld line in immersed FSW
5.4 Regression analysis for air FSW using asbestos backing plate
5.5 Regression analysis for immersed FSW using asbestos backing plate
5.6 Regression analysis for air FSW using mild steel backing plate
5.7 Regression analysis for immersed FSW using mild steel backing plate
5.8 Regression analysis for air FSW using copper backing plate
5.9 Regression analysis for immersed FSW using copper backing plate
5.10 Simulated results of temperature for asbestos as backing plate in air FSW
5.11 Simulated results of temperature for mild steel as backing plate in air FSW
5.12 Simulated results of temperature for copper as backing plate in air FSW
5.13 Temperature distribution for air FSW along thickness direction for (a) asbestos (b) mild steel and (c) copper
5.14 Simulated results of temperature for asbestos as backing plate in immersed FSW
5.15 Simulated results of temperature for mild steel as backing plate in immersed FSW
5.16 Simulated results of temperature for copper as backing plate in immersed FSW
5.17 Temperature distribution for immersed FSW along thickness direction for (a) asbestos (b) mild steel and (c) copper backing plate
6.1 Thermocouple placement in the weld plate in air and immersed FSW
6.2 Temperature profiles at different welding speeds for Air FSW at 1000 rpm rotational speed
6.3 Temperature profiles at different welding speeds for immersed FSW at 1000 rpm rotational speed
6.4 Macrostructure of joint welded at different welding speeds and constant rotational speed of 1000 rpm in air and immersed condition.
6.5 Microstructure of NZ/TMAZ interface at 100 mm/min and 1000 rpm (a) air FSW (b) immersed FSW
6.6 Precipitates transformation diagram of Al-Cu alloys (Colligan, 1999)
6.7 Microstructure of base metal AA2014-T6
6.8 XRD analysis for air FSW for comparison of precipitates at BM, HAZ at
rotational speed, welding speed and shoulder diameter 1000 rpm, 100 mm/min and 17 mm respectively

6.9 XRD analysis for immersed FSW for comparison of precipitates at BM, HAZ at rotational speed, welding speed and shoulder diameter 1000 rpm, 100 mm/min and 17 mm respectively

6.10 XRD analysis for air FSW for comparison of precipitates at BM, HAZ at rotational speed, welding speed and shoulder diameter 1000 rpm, 125 mm/min and 17 mm respectively

6.11 XRD analysis for immersed FSW for comparison of precipitates at BM, HAZ at rotational speed, welding speed and shoulder diameter 1000 rpm, 125 mm/min and 17 mm respectively

6.12 (a) TEM micrograph of BM (b) EDS spectrum obtained on one of the spherical particles (c) TEM micrograph of TMAZ in air FSW (d) TEM micrograph of NZ in air FSW (e) TEM micrograph of TMAZ in immersed FSW (f) TEM micrograph of NZ in immersed FSW

6.13 Microstructure of NZ of FSW AA 2014-T6 at different welding speeds and constant rotational speed of 1000 rpm

6.14 Effect of welding speed on the hardness of air FSW joints

6.15 Effect of welding speed on the hardness of immersed FSW joints

6.16 Effect of welding speed on tensile strength at 1000 rpm rotation speed

6.17 SEM Fractography of tensile specimen at different welding speeds and constant rotational speed of 1000 rpm

6.18 Temperature profiles at different rotational speeds for air FSW

6.19 Temperature profiles at different rotational speeds for immersed FSW

6.20 Macrostructure of joint welded at different rotational speeds and constant welding speed of 100 mm/min

6.21 XRD analysis for air FSW for comparison of precipitates at BM, HAZ at rotational speed, welding speed and shoulder diameter 710 rpm, 100 mm/min and 17 mm respectively

6.22 XRD analysis for air FSW for comparison of precipitates at BM, HAZ at rotational speed, welding speed and shoulder diameter 1000 rpm, 100 mm/min and 17 mm respectively

6.23 XRD analysis for immersed FSW for comparison of precipitates at BM,
HAZ at rotational speed, welding speed and shoulder diameter 710 rpm, 100 mm/min and 17 mm respectively

6.24 XRD analysis for immersed FSW for comparison of precipitates at BM, HAZ at rotational speed, welding speed and shoulder diameter 1000 rpm, 100 mm/min and 17 mm respectively

6.25 Microstructure of NZ with different rotational speeds and constant welding speed of 100 mm/min

6.26 Effect of rotational speed on the hardness of air FSW joints

6.27 Effect of rotational speed on the hardness of immersed FSW joints

6.28 Effect of rotational speed on tensile strength at 100 mm/min welding speed

6.29 SEM fractography of tensile specimen at different rotational speeds with constant welding speed of 100 mm/min

6.30 Temperature profiles at different backing plates in air FSW

6.31 Temperature profiles at different backing plates in immersed FSW

6.32 Microstructure of welded component under different backing plates

6.33 Microstructure of NZ/TMAZ of FSW AA 2014-T6 with different backing plates at 1000 rpm rotational speed and 100 mm/min welding speed

6.34 Microstructure of HAZ of FSW AA 2014-T6 with different backing plates at 1000 rpm rotational speed and 100 mm/min welding speed

6.35 Tensile strength for air and immersed FSW using various backing plates

6.36 SEM fractography of tensile specimen with different backing plates at 1000 rpm rotational speed and 100 mm/min welding speed

6.37 Effect of backing plates on the hardness of air FSW joints

6.38 Effect of backing plates on the hardness of immersed FSW joints