INTRODUCTION
Thermal injury is a serious medical, social and economic problem. Almost every minute of the day, somewhere in the world at least one human being becomes victim of burns. Burns and its sequelae are often the cause of personal and family tragedies. The world-wide development of mechanization and motorization, the growth of heavy industry and of the chemical industry and the wide use of electric energy and ionizing radiation in science and technology contribute to the frequency of burns.

The effect of burns is complex, its treatment expensive, requiring great collective team effort. Many months of hospital treatment are frequently necessary to remove the immediate threat to the patient's life. Reconstructive procedures and therapeutic, vocational and social rehabilitation may last for many years before the patient is able to return to active life.

Burns produce wide raw areas. Coverage of these areas still remains inseparable part of treatment. Since early 19th century idea of autogenous skin grafting to cover the raw area came into existence and is being used. But it has got some limitations (i) if burn area is large, required amount of autogenous donor area is not available (ii) patients are already in shock and not fit for surgery, (iii) it itself produces raw area. Therefore various materials have been suggested by various workers, at different times, either biological or synthetic. Different
biological coverings are homograft skin, heterograft skin, collagen sheets, foetal membranes. Synthetic materials include various films, foams, fabrics, sprays, gels and laminates. One finds it very difficult to choose from such a wide range. An ideal material should have the following properties viz.- adherence, water vapour transport, elasticity, durability, intact bacterial barrier, non antigenic and non toxic, easy to apply and remove and inexpensive or cheap.

Escalating prices of drugs and other materials and phenomenal increase in cost of health care has made it difficult for the commoner to bear the expenses incurred during treatment of burns. As such it would not be inappropriate to develop a suitable efficient and relatively in-expensive treatment for burns that could benefit the poor section of our society. Keeping this in mind, the present study is conducted to evaluate the effect of amniotic and full thickness membranes (amnion & chorion) in burns, and to compare their results.