CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i-ii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>iii-ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x-xii</td>
</tr>
<tr>
<td>LISTS OF FIGURES</td>
<td>xiii-xv</td>
</tr>
<tr>
<td>LISTS OF TABLES</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 *Global energy Crisis and the need for alternative energy source*
1.2 *Nobel idea of utilizing biomass to fuel and energy*
1.3 *Biological process to convert cellulosic biomass to fuels and chemicals*
1.4 *Geographical location plays an important role in the evolution of efficient biomass degraders*
1.5 *Aims and Objectives*

CHAPTER 2 REVIEW OF LITERATURES

2.1 *Overview on lignocellulosic biomass degradation process and its applicability for a sustainable energy source*
2.2 *Cellulases: the cellulose degrading enzymes*
2.3 *Structure and classification of cellulases*
2.4 *Occurrence of cellulases and cellulolytic microorganisms*
2.5 *Cellulase enzyme systems in different microorganisms*
2.5.1 *The cellulase systems in bacterial species*
2.5.2 *The cellulase system in fungal species*
2.6 *Mechanism of enzymatic degradation of cellulosic biomass*
2.6.1 The retaining mechanism of cellulosic biomass degradation by cellulolytic enzymes 38-39
2.6.2 The inverting mechanism of cellulosic biomass degradation by cellulolytic enzymes 40-41
2.7 Measurement of cellulose hydrolysis 41-47
2.7.1 Qualitative methods for cellulose degradation detection 43-44
2.7.2 Quantitative methods for cellulose hydrolysis measurement 44-46
2.7.3 Other novel approaches: automated measurement of cellulase activity 46-47
2.8 Effect of physico-chemical factors on cellulase production and activity 47-50
2.8.1 Chemical factor: Carbon and nitrogen sources 47-49
2.8.2 Physical factors: pH and temperature 49-50
2.9 Bioprocesses for cellulase production 50-52
2.9.1 Submerged Fermentation (SmF) 51
2.9.2 Solid State Fermentation (SSF) 51-52
2.10 Industrial applications of Cellulases 52-53
2.11 Research Objectives 53-56

CHAPTER 3 MATERIALS AND METHODS 57-81
3.1 Materials and equipments 57-58
3.2 Chemicals and reagents 58-60
3.3 Soil sampling 60-62
3.4 Processing of soil samples 62
3.5 Preparation of soil sample for isolation 62
3.6 Isolation on three selective media 63
3.7 Microbial colony count and grouping of colonies 63-64
3.8 Sub-culturing of microorganism 64-65
3.9 Screening for cellulolytic property of the isolates 65-67
3.9.1 Insoluble chromogenic substrate medium 65-66
3.9.2 Soluble substrate and color developed using reagents 66
3.9.3 Estimation of total cellulase activity 66-67
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.4</td>
<td>Estimation of individual cellulase activities</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Identification of potential isolates and their optimal cellulolytic parameters</td>
<td>67-70</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Genomic DNA isolation and rDNA amplification</td>
<td>68</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Phylogenetic dendrogram construction</td>
<td>69</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Optimum pH and temperature on growth</td>
<td>69</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Optimum pH and temperature on enzyme production</td>
<td>69-70</td>
</tr>
<tr>
<td>3.11</td>
<td>In-depth study on the cellulolytic characteristics of T. verruculosus SGMNPf3</td>
<td>70-77</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Time course of cellulase production</td>
<td>70</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Enzyme production on different substrates</td>
<td>70-71</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Precipitation of secretory proteins of T. verruculosus SGMNPf3</td>
<td>71</td>
</tr>
<tr>
<td>3.11.4</td>
<td>Polycrylamide gel electrophoresis and protein profile</td>
<td>71-72</td>
</tr>
<tr>
<td>3.11.5</td>
<td>Extracellular and intracellular protein profile</td>
<td>72-73</td>
</tr>
<tr>
<td>3.11.6</td>
<td>Zymogram for cellulase enzyme determination</td>
<td>73</td>
</tr>
<tr>
<td>3.11.7</td>
<td>Dot Blot analysis for cellulase and β-glucosidase</td>
<td>73-74</td>
</tr>
<tr>
<td>3.11.8</td>
<td>Western Blot analysis for β-glucosidase</td>
<td>74-75</td>
</tr>
<tr>
<td>3.11.9</td>
<td>Two-dimensional electrophoresis of secretory proteins</td>
<td>75-76</td>
</tr>
<tr>
<td>3.11.10</td>
<td>MALDI-TOF and LC-MS/MS protein identification</td>
<td>76-77</td>
</tr>
<tr>
<td>3.12</td>
<td>Preliminary attempt to scale up enzyme production of T. verruculosus SGMNPf3</td>
<td>77-79</td>
</tr>
<tr>
<td>3.12.1</td>
<td>Submerged Fermentation (SF)</td>
<td>77</td>
</tr>
<tr>
<td>3.12.2</td>
<td>Solid State Fermentation (SSF)</td>
<td>78</td>
</tr>
<tr>
<td>3.12.3</td>
<td>Bioreactor/Fermentor (New Brunswick BioFlo)</td>
<td>78-79</td>
</tr>
<tr>
<td>3.13</td>
<td>Preliminary attempt for purification of individual cellulase enzymes from T. verruculosus SGMNPf3</td>
<td>79-80</td>
</tr>
<tr>
<td>3.13.1</td>
<td>Size exclusion chromatography</td>
<td>79</td>
</tr>
<tr>
<td>3.13.2</td>
<td>Ion exchange chromatography</td>
<td>80</td>
</tr>
<tr>
<td>3.13.3</td>
<td>Antibody based affinity chromatography</td>
<td>80</td>
</tr>
<tr>
<td>3.14</td>
<td>Statistical analysis</td>
<td>81</td>
</tr>
</tbody>
</table>
CHAPTER 4 RESULTS 82-143

4.1 Survey and geographical location of sample collection sites 82-83

4.2 Soil sample collection from sites 83-84

4.3 Population of cellulolytic microorganisms 86

4.4 Colony morphology of cellulolytic microorganisms 86-91
 4.4.1 Colonial morphology of bacteria isolates 86-87
 4.4.2 Colonial morphology of actinobacteria isolates 87
 4.4.3 Colonial morphology of fungal isolates 87-88

4.5 Diversity of colonies of cellulolytic microorganisms obtained from different sampling sites 92

4.6 Submission of culture to standard repository 93-105

4.7 Screening for cellulolytic activity 106-107
 4.7.1 Assay for cellulolytic activity on chromogenic media 106
 4.7.2 Soluble cellulose and colour based development 106-107

4.8 Quantitative assay for cellulase activity 108-111

4.9 Detail characterization of potential cellulolytic fungi 112-120
 4.9.1 Colonial morphology and conidiophore of the three cellulolytic fungi 112-113
 4.9.2 Isolation of genomic DNA of the three cellulolytic fungi 113-114
 4.9.3 Molecular identification of the three fungal isolates 115-116
 4.9.4 Growth at different pH and temperature condition 116&118
 4.9.5 Cellulase production at different pH and temperature condition 116&119
 4.9.6 Assays for Individual Cellulase Enzymes 120

4.10 Characterization of cellulolytic properties of T. verruculosus SGMNPf3 121-137
 4.10.1 Cellulase production by T. verruculosus SGMNPf3 at different time intervals 121
 4.10.2 Enzyme production by T. verruculosus SGMNPf3 on different cellulose substrates 122
 4.10.3 Optimum temperature for cellulase activity 123
4.10.4 Extracellular protein profile of T verruculosus SGMNPf3

4.10.5 Zymogram of extracellular protein

4.10.6 Investigation on extracellular or intracellular nature of cellulase

4.10.7 Extracellular proteins on different cellulose substrates

4.10.8 Dot blot assay for cellulase and β-glucosidase detection

4.10.9 Western Blot analysis for β-glucosidase detection

4.10.10 Two dimensional gel electrophoresis of extracellular proteins

4.10.11 MALDI-TOF and LC-MS/MS identification of 2DE spots

4.11 Different method of cellulase production

4.11.1 Solid substrate fermentation and submerged fermentation for cellulase production

4.11.2 Use of Bioreactor for cellulase production

4.12 Preliminary attempt to purify extracellular individual cellulases produced by T. verruculosus SGMNPf3

4.12.1 Size exclusion chromatography

4.12.2 Ion exchange chromatography

4.12.3 Affinity based chromatography

CHAPTER 5 DISCUSSION

CHAPTER 6 SUMMARY AND CONCLUSIONS

BIBLIOGRAPHY

PARTICIPATION IN NATIONAL AND INTERNATIONAL EVENTS

PUBLICATIONS AND COMMUNICATIONS