CONTENTS

DECLARATION i
CERTIFICATE ii
ACKNOWLEDGEMENT iii
ABSTRACT v
CONTENTS vi
LIST OF TABLES xii
LIST OF FIGURES xvi

CHAPTER 1 INTRODUCTION

1.1 GENERAL 1
1.2 URBANISATION AND MASS HOUSING 2
1.3 PFA - A Viable Alternative 3
1.4 Presentation of the Studies Carried Out 6

CHAPTER II REVIEW OF LITERATURE

2.1 INTRODUCTION 10
2.2 CHARACTERISTICS OF PFA 11
2.2.1 Physical Characteristics 12
2.2.2 Chemical Characteristics 14
2.3 POZZOLANIC REACTION 20
2.4 UTILISATION OF PFA INCEMENT CONCRETE 22
2.5 MIX PROPORTIONING METHODS 23
2.5.1 Simple Replacement Method 23
2.5.2 Addition Method 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.3</td>
<td>Modified Replacement Method</td>
<td>24</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Rational Method</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>CHARACTERISTICS OF FRESH PFA CONCRETE</td>
<td>26</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Workability and Water Demand</td>
<td>26</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Setting Time</td>
<td>28</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Bleeding and Segregation</td>
<td>29</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Heat of Hydration</td>
<td>29</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Air Entrainment</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>CHARACTERISTICS OF PFA CONCRETES</td>
<td>30</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Strength Development</td>
<td>30</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Mechanical Properties</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>DURABILITY CHARACTERISTICS OF PFA CONCRETES</td>
<td>33</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Permeability</td>
<td>33</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Water Absorption</td>
<td>34</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Sulphate Attack</td>
<td>34</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Chloride Diffusion</td>
<td>35</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Acid Attack</td>
<td>35</td>
</tr>
<tr>
<td>2.8.6</td>
<td>PFA Concrete in Marine Environment</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>CORROSION OF REBAR</td>
<td>36</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Resistivity</td>
<td>37</td>
</tr>
</tbody>
</table>
2.9.2 Alkalinity of Concrete (pH) 37
2.9.3 Carbonation 38
2.9.4 Corrosion due to Chlorides 39
2.10 APPLICATIONS 40
2.11 SUMMARY 40
2.12 SCOPE OF THE PRESENT INVESTIGATION 42

CHAPTER III EXPERIMENTAL PROGRAMME

3.1 INTRODUCTION 51
3.2 MATERIALS 51
3.3 PROPORTIONING OF CONCRETE MIXES 53
3.3.1 Reference Concretes 53
3.3.2 PFA Concretes 53
3.4 PREPARATION AND TESTING OF SPECIMENS FOR STRENGTH STUDY 55
3.4.1 Specimen Preparation 55
3.4.2 Testing of Specimens 55
3.5 PREPARATION AND TESTING OF SPECIMENS FOR CORROSION STUDY 56
3.5.1 Mix Proportioning 56
3.5.2 Preparation of Rebars 57
3.5.3 Preparation of OPC/PFA Concrete Specimens 58
3.5.4 Testing of Specimens

CHAPTER IV RESULTS AND DISCUSSION

4.1 GENERAL 79

4.2 STRENGTH BEHAVIOUR OF PFA CONCRETES 79

4.2.1 Theoretical Compressive Strength 85

4.2.2 Economical Mix Proportioning 90

4.2.3 Effect of Age on Strength of PFA Concrete 90

4.2.4 Pulse Velocity - Compressive Strength Relation 91

4.2.5 Tensile Strength of PFA Concrete 92

4.3 EFFICIENCY OF PFA 96

4.4 CORROSION STUDY IN PFA CONCRETE 97

4.4.1 Corrosion Potential 97

4.4.2 Alkalinity of OPC/PFA Concrete 98

4.4.3 Resistivity of OPC/PFA Concrete 100

4.4.4 Rate of Corrosion of Rebars 101

CHAPTER V LIFE ASSESSMENT OF PFA CONCRETE

5.1 INTRODUCTION 185

5.2 TECHNICAL BARRIERS OF LIFE SPAN PREDICTION 186

5.3 DESIGN LIFE OF CONCRETE 186

5.4 SUMMARY 189
5.5 LIFE SPAN OF PFA CONCRETE
5.5.1 Definition
5.6 PRESSURE DUE TO REBAR CORROSION
5.7 LIFE SPAN ASSESSMENT
5.7.1 Time Versus Tensile strength
5.8 CORROSION RATE VERSUS TIME
5.8.1 Reference Concrete
5.8.2 PFA Concrete
5.9 CORROSION RATE AND BURSTING PRESSURE

CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION
6.2 SUMMARY
6.3 SCOPE FOR FURTHER STUDY
REFERENCES
APPENDIX - A