List of tables

TABLE 1.1: SEMEN ANALYSIS, NORMAL REFERENCE VALUES AS RECOMMENDED BY WHO

TABLE 2.1: ILLUSTRATION OF THE SCORING METHOD TO ASSESS THE EXTENT OF AGREEMENT IN THE EXPRESSION BETWEEN MCD AND GENE EXPRESSION DATABASES

TABLE 2.2: THE SCORING METHOD USED FOR THE ASSESSMENT OF THE RELATIVE AMOUNT AND VOLUME OF INFORMATION, AND AGREEMENT WITH REPORTS FROM INDIVIDUAL GENE STUDIES.

TABLE 2.3: EXAMPLE DATASET WITH A LIST OF GENES TRANSCRIBED IN HUMAN SPERM

TABLE 2.4: EXAMPLE DATASET WITH A LIST OF GENES UP-REGULATED IN NON-OBSTRUCTIVE AZOOSPERMIC TESTIS

TABLE 2.5: SUMMARY OF MANUALLY CURATED DATA (MCD, FROM REPORTS ON INDIVIDUAL GENE STUDIES) FOR THE GENES SELECTED FOR FINAL COMPARISON OF DATABASES

TABLE 2.6: AGREEMENT IN THE EXPRESSION PATTERN BETWEEN DATABASES AND MCD.

TABLE 2.7: NUMBER OF GENES RETRIEVED FROM DATABASES FOR VARIOUS TESTICULAR PHYSIOLOGICAL CONDITIONS

TABLE 2.8: NUMBER OF GENES RETRIEVED FROM DATABASES FOR MOUSE DEVELOPMENTAL STAGES

TABLE 2.9: RELATIVE ASSESSMENT OF AMOUNT AND DETAILS OF INFORMATION, AND AGREEMENT WITH MCD.

TABLE 3.1: LIST OF GENE ONTOLOGY TERMS ASSOCIATED WITH SPLICING

TABLE 3.2: NUMBER OF SEQUENCES SELECTED FOR SPLICE FACTOR BINDING SITE ANALYSIS

TABLE 3.3: NUMBER OF SEQUENCES SELECTED FOR THE BRANCH POINT ANALYSIS

TABLE 3.4: NUMBER OF SEQUENCES SELECTED FOR NOVEL MOTIF ANALYSIS

TABLE 3.5: LIST OF TESTIS-SPECIFIC SPLICE FACTORS AND GENE ONTOLOGY TERMS ASSOCIATED WITH THEM

TABLE 3.6: PREFERENCE FOR AS EVENTS IN GSTT

TABLE 3.7: NUMBER OF OVER/UNDER-REPRESENTED SPLICE FACTOR BINDING SITES IN THE GSTT COMPARED TO CONSTITUTIVELY SPLICED REGIONS

TABLE 3.8: MOTIFS IDENTIFIED IN THE ‘COMPLETE ALTERNATIVE 3’SS EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE CONSTITUTIVE EXONS (CONTROL SET)

TABLE 3.9: MOTIFS IDENTIFIED IN THE ‘PART OF THE ALTERNATIVE 3’SS EXONS THAT IS ALTERNATIVELY SPliced’ OF THE GSTT (TEST SET) COMPARED TO THE CONSTITUTIVE EXONS (CONTROL SET)
TABLE 3.10: MOTIF IDENTIFIED IN THE ‘PART OF THE ALTERNATIVE 3’SS EXONS THAT IS NOT ALTERNATIVELY SPLICED’ OF THE GSTT (TEST SET) COMPARED TO THE CONSTITUTIVE EXONS (CONTROL SET) 91

TABLE 3.11: MOTIF IDENTIFIED IN THE ‘DOWNSTREAM INTRONS OF ALTERNATIVE 3’SS EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE DOWNSTREAM INTRONS OF CONSTITUTIVE EXONS (CONTROL SET) 91

TABLE 3.12: MOTIFS IDENTIFIED IN THE ‘COMPLETE ALTERNATIVE 5’SS EXONS’ OF THE GSTT (TEST SET) COMPARED TO CONSTITUTIVE EXONS (CONTROL SET) 92

TABLE 3.13: MOTIFS IDENTIFIED IN THE ‘PART OF THE ALTERNATIVE 5’SS EXONS THAT IS ALTERNATIVELY SPLICED’ OF THE GSTT (TEST SET) COMPARED TO THE CONSTITUTIVE EXONS (CONTROL SET) 92

TABLE 3.14: MOTIF IDENTIFIED IN THE ‘PART OF THE ALTERNATIVE 5’SS EXONS THAT IS NOT ALTERNATIVELY SPLICED’ OF THE GSTT (TEST SET) COMPARED TO THE CONSTITUTIVE EXONS (CONTROL SET) 93

TABLE 3.15: MOTIF IDENTIFIED IN THE ‘DOWNSTREAM INTRONS OF ALTERNATIVE 5’SS EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE DOWNSTREAM INTRONS OF THE CONSTITUTIVE EXONS (CONTROL SET) 93

TABLE 3.16: TOP 5 MOTIFS IDENTIFIED IN THE ‘CASSETTE EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE CONSTITUTIVE EXONS (CONTROL SET) 94

TABLE 3.17: MOTIFS IDENTIFIED IN THE ‘UPSTREAM INTRONS OF CASSETTE EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE UPSTREAM INTRONS OF THE CONSTITUTIVE EXONS (CONTROL SET) 95

TABLE 3.18: MOTIFS IDENTIFIED IN THE ‘DOWNSTREAM INTRONS OF CASSETTE EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE DOWNSTREAM INTRONS OF THE CONSTITUTIVE EXONS (CONTROL SET) 96

TABLE 3.19: TOP 5 MOTIFS IDENTIFIED IN THE ‘RETAINED INTRONS’ OF THE GSTT (TEST SET) COMPARED TO THE CONSTITUTIVE INTRONS (CONTROL SET) 97

TABLE 3.20: MOTIF IDENTIFIED IN THE ‘UPSTREAM EXONS OF RETAINED INTRONS’ OF THE GSTT (TEST SET) COMPARED TO THE UPSTREAM EXONS OF THE CONSTITUTIVE INTRONS (CONTROL SET) 98

TABLE 3.21: MOTIFS IDENTIFIED IN THE ‘DOWNSTREAM EXONS OF RETAINED INTRONS’ OF THE GSTT (TEST SET) COMPARED TO THE DOWNSTREAM EXONS OF THE CONSTITUTIVE INTRONS (CONTROL SET) 98

TABLE 3.23: MOTIF IDENTIFIED IN THE ‘COMPLETE ALTERNATIVE 3’SS EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE COMPLETE ALTERNATIVE 3’SS EXONS OF THE NON-GSTT GENES (CONTROL SET) 100
TABLE 3.24: MOTIF IDENTIFIED IN THE ‘PART OF ALTERNATIVE 3’SS EXONS THAT IS NOT ALTERNATIVELY SPLICED’ OF THE GSTT (TEST SET) COMPARED TO THE PART OF ALTERNATIVE 3’SS EXONS THAT IS NOT ALTERNATIVELY SPLICED OF THE NON-GSTT GENES (CONTROL SET) 100

TABLE 3.25: MOTIF IDENTIFIED IN THE ‘DOWNSTREAM INTRONS OF ALTERNATIVE 3’SS EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE DOWNSTREAM INTRONS OF ALTERNATIVE 3’SS EXONS OF THE NON-GSTT GENES (CONTROL SET) 101

TABLE 3.26: MOTIF IDENTIFIED IN THE ‘COMPLETE ALTERNATIVE 5’SS EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE COMPLETE ALTERNATIVE 5’SS EXONS OF THE NON-GSTT GENES (CONTROL SET) 101

TABLE 3.27: MOTIFS IDENTIFIED IN THE ‘PART OF ALTERNATIVE 5’SS EXONS THAT IS NOT ALTERNATIVELY SPLICED’ OF THE GSTT (TEST SET) COMPARED TO THE PART OF ALTERNATIVE 5’SS EXONS THAT IS NOT ALTERNATIVELY SPLICED OF THE NON-GSTT GENES (CONTROL SET) 102

TABLE 3.28: MOTIFS IDENTIFIED IN THE ‘DOWNSTREAM INTRONS OF ALTERNATIVE 5’SS EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE DOWNSTREAM INTRONS OF ALTERNATIVE 5’SS EXONS OF THE NON-GSTT GENES (CONTROL SET) 103

TABLE 3.29: MOTIFS IDENTIFIED IN THE ‘CASSETTE EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE CASSETTE EXONS OF THE NON-GSTT GENES (CONTROL SET) 104

TABLE 3.30: MOTIFS IDENTIFIED IN THE ‘UPSTREAM INTRONS OF CASSETTE EXONS’ OF THE GSTT (TEST SET) COMPARED TO THE UPSTREAM INTRONS OF CASSETTE EXONS OF THE NON-GSTT GENES (CONTROL SET) 105

TABLE 3.31: MOTIF IDENTIFIED IN THE ‘UPSTREAM EXONS OF THE RETAINED INTRONS’ OF THE GSTT (TEST SET) COMPARED TO THE UPSTREAM EXONS OF THE RETAINED INTRONS OF THE NON-GSTT GENES (CONTROL SET) 105

TABLE 3.32: MOTIFS IDENTIFIED IN THE ‘RETAINED INTRONS’ OF THE GSTT (TEST SET) COMPARED TO THE RETAINED INTRONS OF THE NON-GSTT GENES (CONTROL SET) 106

TABLE 3.33: MOTIFS OVER/UNDER-REPRESENTED IN THE SEQUENCE REGIONS OF THE GSTT WHEN COMPARED TO BOTH THE CONTROL SETS 107

TABLE 3.34: OVER/UNDER-REPRESENTED BRANCH POINT SITES IN THE SEQUENCE REGIONS OF THE GSTT 108

TABLE 3.35: DIFFERENCES BETWEEN THE STABILITIES OF ALL ALTERNATIVELY SPLICED SS JUNCTIONS AND THE CONSTITUTIVELY SPLICED SS JUNCTIONS 112

TABLE 3.36: DIFFERENCES BETWEEN THE STABILITIES OF THE ALTERNATIVELY SPLICED SS JUNCTIONS OF GSTT AND THE CONSTITUTIVELY SPLICED SS JUNCTIONS 113

TABLE 3.38: ALIGNMENT OF RIBOSWITCH SEQUENCES TO THE HUMAN GENOME AND TRANSCRIPTOME 115
TABLE 4.1: DISTRIBUTION OF TRANSCRIPT-SPECIFIC PROBES ACROSS TRANSCRIPT-SPECIFIC-PROBE-CLUSTERS FOR THE WIDELY USED HUMAN, MOUSE AND RAT PLATFORMS. 141

TABLE 4.2: COMPARISON OF TIPMAP WITH 14 RESOURCES IN TERMS OF THE FUNCTIONALITY 154

TABLE 4.3: COMPARISON OF TIPMAP WITH 14 RESOURCES IN TERMS OF THE INPUT FEATURES 155

TABLE 4.4: COMPARISON OF TIPMAP WITH 14 RESOURCES IN TERMS OF THE OUTPUT FEATURES 156

TABLE 5.1: NOA SAMPLE DETAILS 163

TABLE 5.2: PRIMER DETAILS 165

TABLE 5.3: TOP 10 TRANSCRIPTS WITH ‘TRANSCRIBED’ STATUS IN NOA AND ‘NOT-DETECTED’ STATUS IN NORMAL TESTIS, AND ‘UP-REGULATED’ STATUS IN NOA COMPARED TO NORMAL TESTIS, AS PREDICTED BY TIPMAP. 167

TABLE 5.4: TOP 10 TRANSCRIPTS WITH ‘NOT-DETECTED’ STATUS IN NOA AND ‘TRANSCRIBED’ STATUS IN NORMAL TESTIS, AND ‘DOWN-REGULATED’ STATUS IN NOA COMPARED TO NORMAL TESTIS, AS PREDICTED BY TIPMAP. 168

TABLE 5.5: DISTRIBUTION OF TRANSCRIPT EXPRESSION PROFILES ACROSS SINGLE AND MULTI-TRANSCRIPT GENES, AS PREDICTED BY TIPMAP 169

TABLE 5.6: EXAMPLES OF DIFFERENTIALLY REGULATED TRANSCRIPT ISOFORMS (TRANSCRIPTS CODED BY A SINGLE GENE), AS PREDICTED BY TIPMAP 170

TABLE 5.7: EXPRESSION PATTERN COMPARISON BETWEEN TIPMAP AND MGEX-TDB 171

TABLE 5.8: EXPRESSION PATTERN COMPARISON BETWEEN TIPMAP AND LITERATURE 172

TABLE 5.9: CONSENSUS DETECTION STATUS, RELIABILITY SCORES, AND RANKS FOR THE SELECTED GENES AND THEIR TRANSCRIPT ISOFORMS 174

TABLE 5.10: SUMMARY OF THE EXPRESSION PATTERN COMPARISON BETWEEN RT-PCR AND TIPMAP 185

TABLE 6.1: RAW DATA, THEIR QUALITY, AND ALIGNMENT RESULTS ACROSS SAMPLES 199

TABLE 6.2: TOP 10 TRANSCRIPTS WITH ‘TRANSCRIBED’ STATUS IN NOA AND ‘NOT-DETECTED’ STATUS IN NORMAL TESTIS, AND ‘UP-REGULATED’ STATUS IN NOA COMPARED TO NORMAL TESTIS, AS DETERMINED BY RNA SEQUENCING. 202

TABLE 6.3: TOP 10 TRANSCRIPTS WITH ‘NOT-DETECTED’ STATUS IN NOA AND ‘TRANSCRIBED’ STATUS IN NORMAL TESTIS, AND ‘DOWN-REGULATED’ STATUS IN NOA COMPARED TO NORMAL TESTIS, AS DETERMINED BY RNA SEQUENCING. 203

TABLE 6.4: EXAMPLES OF DIFFERENTIALLY REGULATED TRANSCRIPT ISOFORMS, AS DETERMINED BY RNA SEQUENCING 204

TABLE 6.5: DISTRIBUTION OF TRANSCRIPT EXPRESSION PROFILES ACROSS SINGLE AND MULTI-TRANSCRIPT GENES, AS DETERMINED BY RNA SEQUENCING 205
TABLE 6.6: VERIFICATION OF THE RNA SEQUENCING EXPRESSION PROFILES WITH THE EXISTING LITERATURE 207

TABLE 6.7: EXPRESSION PATTERN COMPARISON BETWEEN TIPMAP AND RNA SEQUENCING 208

TABLE 6.8: EXPRESSION PATTERN COMPARISON BETWEEN TIPMAP AND RNA SEQUENCING FOR THE SELECTED SET OF TRANSCRIPTS 209

TABLE 6.9: POTENTIAL BIOMARKERS FOR NOA 210

TABLE 6.10: EXPRESSION PROFILES OF POTENTIAL BIOMARKERS IN VARIOUS NORMAL TISSUES 212

TABLE 6.11: GENE ONTOLOGY TERMS AND KEGG PATHWAYS ASSOCIATED WITH NOA POTENTIAL BIOMARKERS 213
List of figures

FIGURE 1.1: SCHEMATIC REPRESENTATION OF THE WORK & FLOW 1
FIGURE 1.2: YEAR-WISE DISTRIBUTION OF THE PUBLICATIONS RELATED TO MICROARRAYS 5
FIGURE 1.3: FLOWCHART FOR MICROARRAYS FROM EXPERIMENT TO DATA ANALYSIS 6
FIGURE 1.4: YEAR-WISE DISTRIBUTION OF PUBLICATIONS RELATED TO RNA SEQUENCING 9
FIGURE 1.5: RNA SEQUENCING FLOWCHART FROM EXPERIMENT TO DATA ANALYSIS 10
FIGURE 1.6: A SCHEMATIC REPRESENTATION OF THE SPLICING REACTION (REDRAWN FROM BLACK DL ET AL. [145]) 16
FIGURE 1.7: TYPES OF AS 17
FIGURE 2.1: BIOCURATION PROCESS FLOWCHART 36
FIGURE 2.2: FORMAT DESIGNED TO MAKE THE GENE-LISTS 39
FIGURE 2.3: LIST OF ESCLS GENERATED FROM EIGHT GENE-SETS REPORTED BY SADATE-NGATCHOU ET AL. 41
FIGURE 2.4: IN-HOUSE WEB-BASED APPLICATION USED TO UPLOAD THE CURATED DATA 42
FIGURE 2.5: DISTRIBUTION OF RESEARCH ARTICLES ACROSS SPECIES 46
FIGURE 2.6: DISTRIBUTION OF CURATED DATASETS ACROSS SOURCES AND SPECIES 49
FIGURE 2.7: DISTRIBUTION OF NUMBER GENES AVAILABLE IN DIFFERENT DATASETS FROM VARIOUS RESOURCES 50
FIGURE 2.8: COMPARATIVE CONTRIBUTION OF VARIOUS TECHNIQUES TO THE DATASETS, GENERATED FROM ORIGINAL GENE EXPRESSION PROFILES REPORTED IN RESEARCH ARTICLES OR REPOSITORIES 52
FIGURE 2.9: COMPARATIVE USE OF MICROARRAY PLATFORMS IN GENERATING GENE EXPRESSION PROFILES 53
FIGURE 2.10: DISTRIBUTION OF DATASETS (AND STUDIES) ACROSS VARIOUS TESTICULAR PHYSIOLOGICAL CONDITIONS IN HUMAN, MOUSE, AND RAT SPECIES 54
FIGURE 2.11: DISTRIBUTION OF DATASETS ACROSS NORMAL HUMAN TISSUES 55
FIGURE 2.12: DISTRIBUTION OF DATASETS ACROSS NORMAL MOUSE TISSUES 56
FIGURE 2.13: COMPARATIVE PERFORMANCE OF GENE EXPRESSION RESOURCES 60
FIGURE 3.1: DIAGRAMMATIC REPRESENTATION OF THE SELECTED SEQUENCE REGIONS, AND THE COMPARISONS PERFORMED FOR SPLICE FACTOR BINDING SITE ANALYSIS 76
FIGURE 4.20: SEARCH BY TRANSCRIPT IDS 152
FIGURE 5.1: RNA VOLUME, CONCENTRATION AND QUALITY 173
FIGURE 5.2: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE DYPD 175
FIGURE 5.3: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE HNMT 176
FIGURE 5.4: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE PAFAH1B2 177
FIGURE 5.5: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE RPS6KA5 178
FIGURE 5.6: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE EGFR 179
FIGURE 5.7: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE TCF21 180
FIGURE 5.8: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE KDELR3 181
FIGURE 5.9: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE RALGPS1 182
FIGURE 5.10: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE GAD1 183
FIGURE 5.11: RT-PCR RESULTS FOR THE TRANSCRIPT ISOFORMS ENCODED BY THE GENE GREB1 184
FIGURE 6.1: SUMMARY OF RNA SAMPLES USED, IN TERMS OF QUALITY (AS INDICATED BY THE ELECTROPHORETIC ANALYSIS, SPECTROPHOTOMETRIC ANALYSIS, AND INTEGRATION NUMBER), VOLUME, AND CONCENTRATION. 197
FIGURE 6.2: CLUSTERING OF SAMPLES BASED ON FPKM VALUES OF ALL TRANSCRIPTS 200
FIGURE 6.3: CLUSTERING OF SAMPLES BASED ON FPKM VALUES OF TRANSCRIPTS ASSOCIATED WITH SPERMATOGENESIS 200
FIGURE 6.4: GENE ONTOLOGY TERMS ENRICHED IN THE DIFFERENTIALLY REGULATED AS WELL AS DETECTED TRANSCRIPTS, AS DETERMINED BY RNA SEQUENCING 206
FIGURE 7.1: SCHEMATIC REPRESENTATION OF THE OVERALL FLOW OF WORK AND CONCLUSIONS 220
List of boxes

BOX 2.1: PUBMED QUERY TO SCREEN FOR THE MASS SCALE GENE EXPRESSION STUDIES IN TESTIS TISSUE 33
BOX 2.2: TERMS USED TO SCREEN FOR TESTIS RELATED ARTICLES IN REPOSITORIES 34
BOX 2.3: TERMS USED TO SCREEN FOR THE MASS SCALE STUDIES RELATED TO OTHER NORMAL TISSUES IN REPOSITORIES 34
BOX 2.4: LIST OF 60 RANDOM GENES AND AN EXAMPLE QUERY DESIGNED FOR PIWIL2 GENE TO SCREEN THE LITERATURE USING PUBMED 43
BOX 2.5: LIST OF ADDITIONAL 50 RANDOM GENES CHOSEN FOR GENE COVERAGE COMPARISON 44
BOX 3.1: QUERY TO SCREEN THE PUBLISHED LITERATURE FOR A LIST OF SPLICE FACTORS 71
BOX 4.1: QUERY DESIGNED TO SCREEN FOR THE TOOLS DEVELOPED TO PREDICT EXPRESSION AT TRANSCRIPT LEVEL USING EXISTING GENE EXPRESSION DATA 139
BOX 5.1: SEARCH QUERY TO OBTAIN ARTICLES ASSOCIATED WITH THE EXPRESSION PROFILING OF GENES IN NOA SAMPLES 163
BOX 6.1: QUERY DESIGNED TO SCREEN FOR THE PUBLICATIONS WITH GENE EXPRESSION PROFILES IN NOA SAMPLES 193
BOX 6.2: PUBMED QUERY TO SCREEN FOR THE EXPRESSION PROFILES OF THE PREDICTED POTENTIAL BIOMARKERS IN NOA 196
List of abbreviations

Standard abbreviations

Alexa-Seq: Alternative Expression Analysis By Sequencing
ASAP: Alternative Splicing Annotation Project
ASG: Alternative Splicing Gallery
ASTRA: Alternative Splicing And Transcription Archives
AZF: Azoospermic Factor
BAM: Binary Alignment File
BEAT: Bioinformatics Exon Array Tool
Bgee: Database For Gene Expression Evolution
BLAST: Basic Local Alignment Search Tool
CDFs: Chip Definition Files
cDNA: Complementary Deoxy Ribonucleic Acid
CGI: Common Gateway Interface
CIBEX: Center For Information Biology Gene Expression Database
CPAN: Comprehensive Perl Archive Network
CTFR: Cystic Fibrosis Conductance Regulator
Cy3: Cyanine 3
Cy5: Cyanine 5
DAVID: Database For Annotation, Visualization And Integrated Discovery
DBATE: Database Of Alternative Transcripts Expression
dbEST: Database For Expressed Sequence Tags
DNA: Deoxyribose Nucleic Acid
E complex: Early Complex
ESE: Exonic Splicing Enhancer
ESRsearch: Exonic-Splicing Regulatory Search
ESS: Exonic Splicing Silencer
ESTs: Expressed Sequence Tags
FAGE: Formaldehyde Agarose Gel By Electrophoresis
fast DB: Friendly Alternative Splicing And Transcripts Database
FASTA: Fast Alignment
FDR: False Discovery Rate
FMN: Flavin Mononucleotide
FPKM: Fragments Per Kilobase Of Transcript Per Million Mapped Reads
FSH: Follicular Stimulating Hormone
FTP: File Transfer Protocol
GATExplorer: Genomic And Transcriptomic Explorer
GeneSigDB: Gene Signatures Database
GEO: Gene Expression Omnibus
glmS: Glucosamine-6-Phosphate
G: Glycine
GnRH: Gonadotropin Releasing Hormone
GPL: Geo Platform
GSE: Geo Experiment
GSM: Geo Sample
GTF: Gene Transfer Format
GXD: Gene Expression Database
GY: Glycine-Tyrosine
H-ANGEL: Human Anatomical Gene Expression Library
hCG: Human Chorionic Gonadotropin
hnRNP: Heterogeneous Nuclear Ribonucleoprotein
HPRD: Human Protein Reference Database
HTML: Hyper Text Markup Language
IBA: Inferred From Biological Aspect Of Ancestor
IBAB: Institute Of Bioinformatics And Applied Biotechnology
IBSC: Institutional Biosafety Committee
IDA: Inferred From Direct Assay
IEA: Inferred From Electronic Annotation
IMP: Inferred From Mutant Phenotype
IPI: Inferred From Physical Interaction
ISE: Intronic Splicing Enhancer
ISS: Inferred From Sequence Or Structural Similarity
ISS: Intronic Splicing Silencer
KEGG: Kyoto Encyclopedia Of Genes And Genomes
LH: Luteinizing Hormone
MAQC: Microarray Quality Control
MASS: Microarray Suite 5
MEME: Multiple Em For Motif Elicitation
MGEx-Tdb: Mammalian Gene Expression Database For Testis
miRNA: Micro Ribonucleic Acid
MM: Mis-Match
MMBGX: Multi-Mapping Bayesian Gene Expression
MPSS: Massively Parallel Signature Sequencing
MRG: Mammalian Reproductive Genetics
mRNA: Messenger Ribonucleic Acid
MySQL: My Structured Query Language
NAS: Non-Traceable Author Statement
NCBI: National Center For Biotechnology Information
NGS: Next Generation Sequencing
NIH: National Institutes Of Health
NOA: Non Obstructive Azoospermia
OA: Obstructive Azoospermia
OMIM: Online Mendelian Inheritance In Man
PCR: Polymerase Chain Reaction
PERL: Practical Extraction Report Language
PM: Perfect Match
PreQ1: Pre-Queuosine1
RAM: Random Access Memory
RefExA: Reference Database For Gene Expression Analysis
RefSeq: Reference Sequence
RGG: Arginine-Glycine-Glycine
RMA: Robust Multi-Array Average
RNA: Ribonucleic Acid
RPKM: Reads Per Kilobase Per Million Mapped
RRMs: RNA Recognitions Motifs
rRNA: Ribosomal Ribonucleic Acid
RS: Arginine-Serine
RTPCR: Reverse Transcription Polymerase Chain Reaction
S': Svedberg Units
SAGE: Serial Analysis Of Gene Expression
SAM: S-Adenosyl Methionine
SMD: Stanford Microarray Database
SNPs: Single Nucleotide Polymorphisms
snRNA: Small Nuclear Ribonucleic Acid
snRNP: Small Nuclear Ribonucleoprotein
SOFT: Simple Omnibus Format In Text
SR: Serine-Arginine
SRA: Sequence Read Archive
SRGY: Serine-Arginine-Glycine-Tyrosine
ss/SS: Splice Site
TAS: Traceable Author Statement
TiGER: Tissue-Specific Gene Expression And Regulation
TIPMaP: Transcript Isoform Profiles From Microarray Probes
TMM: Trimmed Mean Of M
TPP: Thiamine Pyrophosphate
tRNA: Transfer Ribonucleic Acid
U2AF: U2 Auxiliary Factor
WHO: World Health Organization
ZOOPS: Zero Or One Motif Per Sequence
2D PAGE: 2 Dimensional Polyacrylamide Gel Electrophoresis
°C: Degree Centigrade
4DXpress: Expression Database In Four Dimension

Other abbreviations
A: Absent
A: Agreement
AS: Alternative Splicing
C: Contradiction
CEs: Constitutive Exons
CIs: Constitutive Introns
DS: Difference Score
ESLC: Expression Status Under Specific Location And Condition
GSTT: Genes Specifically Transcribed In Testis
ID: Identifier
M: Marginal
MCD: Manually Curated Data
NA: Not Applicable
NC: No Call
ND: No Data
ND: Not Detected
P: Present
p: Page
pp: Pages
PA: Partial Agreement
PC: Partial Contradiction
RDS: Random Difference Scores
Rscore: Random Percentage Occurrence
T: Transcribed