CONTENTS

Abstract ..vi
List of tables ..xii
List of figures ...xv
List of boxes ...xvii
List of abbreviations ..xviii

1 OVERVIEW AND BACKGROUND 1
1.1 GENE EXPRESSION AND TECHNIQUES AVAILABLE FOR EXPRESSION PROFILING 3
1.1.1 Techniques available to determine gene expression profiles 3
1.1.1.1 Microarray 4
1.1.1.1.1 Affymetrix microarray chips 8
1.1.1.2 RNA sequencing 8
1.1.2 Prediction of gene expression profiles 11
1.2 THE MAMMALIAN TESTIS TISSUE 11
1.2.1 Notes on infertility 12
1.2.1.1 Azoospermia 13
1.2.1.1.1 Non-obstructive Azoospermia (NOA) 14
1.3 SPlicing AND ALTERNATIVE SPlicing 15
1.3.1 Alternative splicing (AS) 16
1.4 BIOMARKERS 19
1.5 BIBLIOGRAPHY 19

2 BIOCURATION OF THE GENE EXPRESSION DATA 30
2.1 INTRODUCTION 30
2.2 METHODS 33
2.2.1 Screening of research articles 33
2.2.1.1 Gene expression profiling studies related to testis tissue 33
2.2.1.2 Gene expression profiling studies related to other normal tissues 34
2.2.1.3 Curation of gene expression data 35
2.2.2 Consensus derivation 40
2.2.3 Comparison with other gene expression databases 42

2.2.3.1 Checking the reliability of the expression status across databases using manually curated data (MCD) 43

2.2.3.2 Comparison of coverage of gene-centric information, particularly their expression 43

2.2.3.3 Comparison of information availability about the expression of genes in various physiological conditions 44

2.2.3.4 Semi-quantitative comparison of information availability 45

2.3 RESULTS 46

2.3.1 Biocuration 46

2.3.2 Use of the curated data 51

2.3.3 Comparison of MGEx-Tdb with other gene expression databases 57

2.3.3.1 Checking the reliability of the expression status across databases using MCD 57

2.3.3.2 Comparison of coverage of gene-centric information, particularly their expression 58

2.3.3.3 Comparison of information availability about the expression of genes in various physiological conditions 58

2.3.3.4 Semi-quantitative comparison of information availability 59

2.4 DISCUSSION 60

2.5 BIBLIOGRAPHY 62

3 UNDERSTANDING THE KEY ASPECTS OF ALTERNATIVE SPLICING 68

3.1 INTRODUCTION 68

3.1.1 Splice factors and their expression 68

3.1.2 Splicing regulatory motifs 69

3.1.3 RNA secondary structure 69

3.1.4 Riboswitches 70

3.2 METHODS 71

3.2.1 Splice factors and their expression profiles 71

3.2.1.1 Compilation of splice factors 71

3.2.1.2 Extraction of splice factor expression profiles 71

3.2.2 Co-expressed gene cluster: genes specifically transcribed in testis (GSTT) 72

3.2.3 Mapping of AS events to genes 72
3.2.3.1 Is there a preference for an AS event in GSTT? 73
3.2.4 Identification of constitutively spliced exons and introns 73
3.2.5 Identification of over/under-represented motifs, which might be important for splicing 73
3.2.5.1 Splice factor binding site analysis 74
3.2.5.2 Branch point analysis 77
3.2.5.3 Identification of new motifs by Multiple Expectation maximization (Em) for Motif Elicitation (MEME) analysis 78
3.2.6 RNA secondary structure stability 80
3.2.7 Screening for riboswitches 81
3.3 RESULTS 82
3.3.1 Splice factors and their expression profiles 82
3.3.2 Genes specifically transcribed in testis (GSTT), a co-expressed gene cluster 84
3.3.3 Is there a preference for an AS event in GSTT? 84
3.3.4 Splicing regulatory motifs 87
3.3.4.1 Splice factor binding sites 87
3.3.4.2 Branch point sites 107
3.3.4.3 New motifs through MEME analysis 107
3.3.5 RNA secondary structural stability 111
3.3.6 Riboswitches signature sequences in human genome 113
3.4 DISCUSSION 116
3.5 BIBLIOGRAPHY 118
4 DEVELOPMENT OF A NOVEL TOOL FOR DETERMINATION OF THE TRANSCRIPT EXPRESSION PROFILES, USING EXISTING MICROARRAY DATA 124
4.1 INTRODUCTION 124
4.2 IMPLEMENTATION 125
4.2.1 Data downloading 125
4.2.2 Aligning probes to transcript sequences 126
4.2.3 Generating transcript-specific-probe-clusters 126
4.2.4 Creating new CDF files 126
4.2.5 Normalizing gene expression data 126
4.2.6 TIPMaP workflow 126
4.2.7 Comparison with existing possible alternatives 139
4.3 RESULTS AND DISCUSSION 139
4.3.1 Data compiled 140
4.3.2 BLAST results 140
4.3.3 Quality check 141
4.3.4 Resource usage – a case study 141
4.3.5 Comparison with existing computational resources 153
4.4 BIBLIOGRAPHY 157
5 IN SILICO COMPARISONS AND EXPERIMENTAL VALIDATIONS OF TIPMAP 161
5.1 INTRODUCTION 161
5.2 METHODS 161
5.2.1 Re-analyze the gene expression data using TIPMaP 161
5.2.2 In silico comparisons 162
5.2.2.1 Extracting expression information from MGEx-Tdb 162
5.2.2.2 Extracting expression information from literature 162
5.2.3 Experimental validation by RT-PCR 163
5.2.3.1 Selection of transcripts 163
5.2.3.2 Clinical sample collection and storage 163
5.2.3.3 RNA isolation 164
5.2.3.4 RT-PCR 164
5.3 RESULTS 164
5.3.1 Analyzing microarray gene expression data using TIPMaP 164
5.3.2 In silico comparisons 166
5.3.2.1 Comparison with MGEx-Tdb 166
5.3.2.2 Comparison with published literature 169
5.3.3 Experimental validation by RT-PCR 172
5.3.3.1 RNA volume, concentration and quality 172
5.3.3.2 Selected transcripts 172
5.3.3.3 Expression pattern validation by RT-PCR 172
5.4 DISCUSSION 173
5.5 BIBLIOGRAPHY 187

6 ESTABLISHING THE TRANSCRIPTOME FOR NON-OBSTUCTIVE AZOOSPERMIA USING RIBONUCLEIC ACID SEQUENCING, AND IDENTIFICATION OF POTENTIAL BIOMARKERS 190

6.1 INTRODUCTION 190
6.2 METHODS 191
6.2.1 RNA sequencing 191
6.2.1.1 Sequencing 191
6.2.1.2 Verification of the expression profiles with the existing literature 192
6.2.2 Identification of potential biomarkers 193
6.3 RESULTS 196
6.3.1 RNA volume, concentration, and quality 196
6.3.2 RNA sequencing 197
6.3.2.1 Raw data and their quality 197
6.3.2.2 Alignment results 198
6.3.2.3 Clustering 198
6.3.2.4 Expression profiles of transcripts 198
6.3.2.5 Functional annotation 201
6.3.2.6 Verification of the expression profiles with existing literature 201
6.3.3 Identification of potential biomarkers 201
6.3.3.1 Comparison of the expression profiles from TIPMaP and RNA sequencing 201
6.4 DISCUSSION 211
6.5 BIBLIOGRAPHY 215

6 OVERVIEW AND CONCLUSION 219
6.1 SUMMARY 219
6.2 BIOCURATION OF THE GENE EXPRESSION DATA 219
6.3 UNDERSTANDING THE KEY ASPECTS OF ALTERNATIVE SPlicing 221
6.4 DEVELOPMENT OF A NOVEL TOOL FOR THE DETERMINATION OF TRANSCRIPT EXPRESSION PROFILES, USING EXISTING MICROARRAY DATA 221

6.5 IN SILICO COMPARISONS AND EXPERIMENTAL VALIDATION OF TIPMAP 222

6.6 ESTABLISHING THE TRANSCRIPTOME FOR NON-OBSTRUCTIVE AZOOSPERMIA USING RIBONUCLEIC ACID SEQUENCING, AND IDENTIFICATION OF POTENTIAL BIOMARKERS 222

6.7 FUTURE PERSPECTIVES 222

6.8 BIBLIOGRAPHY 223

Publications and poster presentations ...224

Appendix...225