List of Figure

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Figure Description</th>
<th>Plate No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figure 1. Mechanism of AChE and its interference by OP. (Source: Walsh et al., 2001; Mileson et al., 1998)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Figure 2. Metabolism of deltamethrin mediated by subfamilies of CYP6. CYP6M2 produced by An.gambiae [Stevenson et al., 2010], CYP6AA3 by An. minimus [Boonsuepsakul et al., 2008] (Source: Stevenson et al., 2010).</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Figure 3. Detection of polymorphic loci with the RAPD technique. Corresponding chromosomes from B6 and C3H are indicated schematically as horizontal lines. Boxes on each line represent genomic fragments (RAPD loci) that can be amplified with a particular primer. Locus B is polymorphic. An illustration of the gel pattern that would be obtained with amplifiable products from B6 and C3H is shown. (Source: Williams et al., 1990).</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Figure 4. Schematic representation of mitochondrial genome.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Figure 5. Diagrammatic representation of ribosomal DNA within the nucleolar organiser region of the eukaryotic genome, the tandem repeats are shown in black boxes, the transcription unit, the non-transcribed spacers and the two internal transcribed spacers (not to scale).</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Figure 6. Elements of RNA Secondary Structure.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Figure 7. Map of Mizoram. The figure shows the different districts; and Thenzawl the primary site of collection of Anopheles species.</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Figure 8. Sites of survey in Thenzawl. The Figure shows the ten sites of collection of Anopheles species.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Figure 9. Apparatus used for scoop-net (SN) method for collection of Anopheles larva. The picture shows larval net, iron handle, plastic tub, a plastic dipper and a dropper</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Figure 10. Apparatus used for adult Anopheles collection. A: The picture shows a killing jar in the middle and on sides capped tube used for individual adult. B: CDC (Centers for Disease Control) light trap</td>
<td>5</td>
</tr>
</tbody>
</table>
Figure 11. Apparatus used Anopheline culture (A-D) in the laboratory.

Figure 12. Deltamethrin (0.1%) bioassay against Anopheles larva after 24 hours exposure

Figure 13. Biochemical analysis of α-naphtyl acetate assay for general esterase

Figure 14. The clustal W alignment of Ace-1 complete coding sequences of Anopheles gambiae.

Figure 15. Comparison of three DNA extraction procedures on 0.8% agarose gel.

Figure 16. The diluted 11 DNA working samples for RAPD Analysis on 0.8% Agarose gel.

Figure 17. RAPD–PCR profile of eleven Anopheles species produced by 11 primers.

Figure 18. Anopheles peditaeniatus (NSK02)

Figure 19. An. maculatus (NSK02)

Figure 20. An. jeyporiensis (NSK09)

Figure 21. An. subpictus (NSK11)

Figure 22. An. aconitus (NSK13)

Figure 23. An. varuna (NSK20)

Figure 24. An. kochi (NSK21)

Figure 25. An. dirus (NSK22)

Figure 26. An. minimus (NSK23)

Figure 27. An. campestris (NSK01)

Figure 28. An. jamesii (NSK03)

Figure 29. An. philippinensis (NSK06)

Figure 30. An. annularis (NSK07)
Figure 31. *An. nivipes* (NSK10)
Figure 32. *An. sinensis* (NSK15)
Figure 33. *An. vagus* (NSK18)
Figure 34. *An. culiciformis* (NSK19)
Figure 35. Graphical representation of total *Anopheles* spp. at Thenzawl, January – November, 2009 – 2011.
Figure 36. Graphical representation of monthly relation of *Anopheles* spp. abundance with malarial prevalence at Thenzawl, January – November, 2009 – 2011.
Figure 37. Regression line drawn against % probit mortality and log dose of *An. vagus*.
Figure 38. Regression line drawn against % probit mortality and log dose of *An. campestris*.
Figure 39. Regression line drawn against % probit mortality and log dose of *An. jamesii*.
Figure 40. Regression line drawn against % probit mortality and log dose of *An. nivipes*.
Figure 41. The formaldehyde agarose gel for the separation of total RNA extraction. Lane 1: *An. nivipes* and lane 2: *An. vagus*.
Figure 42. 1.5% agarose gel showing standardized β–actin gene qRT-PCR.
Figure 43. Gene expression of Resistant Genes through RT-PCR (200 - 250bp) in 1.5% agarose gel.
Figure 44. A dendrogram produced from Morphological characterization displaying complete linkage Euclidean distances using UPGMA method (with 1000 bootstrap value). The figure shows I: Sub genus *Cellia* and II: Sub genus *Anopheles*.
Figure 45. Dendrogram developed RAPD PCR profiling from pair-wise genetic similarity according to Jaccard’s coefficient by UPGMA method.
Figure 46. PCR-amplified COI regions of the Mizoram *Anopheles* species. 23

Figure 47. PCR-amplified ITS2 regions of the Mizoram *Anopheles* species of the subgenera *Cellia*. 23

Figure 48. Molecular phylogenetic analysis by maximum parsimony method based on COI sequence data. The tree was rooted with COI sequence of *Culex tritaeniorhynchus* (GenBank: [JQ003061](#)) and *C. quinquefasciatus* (GenBank: [GU188856](#)). 24

Figure 49. ITS2 secondary structures of *Anopheles* species of Mizoram. 25

Figure 50. Molecular phylogenetic analysis by maximum likelihood method based on ITS2 sequence data for 10 *Anopheles* species from Mizoram. 26
List of Tables

Table 1. The name, sequences, melting temperature (Tm) and GC% of the primers used to target AChE partial gene. 41

Table 2. The name of primers, sequence, melting temperature (Tm) and GC% of the primers used to target CYP6 partial gene. The name of the primer corresponded to the target name of the subfamily of CYP6 gene (CYP6AA2 and CYP6F1). 42

Table 3. Anopheles species prevalence and abundance from different collection sites of Mizoram. 68

Table 4. Global positioning system, temperature and relative humidity of survey area with its Anopheles species distribution at Thenzawl during 2009 – 2011. 71

Table 5: Month, total survey area (%), total Anopheles spp. presence (%), total number of anopheline collected, Mean of species collection, total number (%) tested for identification, and total number (%) of each Anopheles spp. collected for each survey period by species at Thenzawl, 2009 – 2011. 74

Table 6: Dose concentration used in percent and its corresponding LC50 in An. vagus, An. campestris, An. jamesii and An. nivipes. 77

Table 7. Summary of result of the biochemical assay of general esterase, mixed function oxidase and glutathione-S-transferase during 2009 – 2011. 78

Table 8. Nine Anopheles species and their cDNA concentration and volumes used for standardized qRT-PCR. 80

Table 9. The result of semi-quantitative mRNA expression of resistant partial genes Ace1 and CYP6 – CYP6AA2 and CYP6F1 in the nine Anopheles species of Mizoram. 80

Table 10. Morphological characters of eleven species of Anopheles. ‘+’ or ‘−’ indicates presence / absence of a character. 82

Table 11. RAPD-PCR primers: Name, Sequence, Total number of bands, Total polymorphic bands, Polymorphism percent, Polymorphic content (PIC), Average band per assay,
Resolving power (RP), Effective multiplex ratio (EMR) and Marker Index (MI).

Table 12. Name of species, accession number and nucleotide composition of COI sequence of eleven *Anopheles* species.

Table 13. Estimates of evolutionary divergence and codon based test of positive selection between COI sequences of *Anopheles* species collected from Mizoram.

Table 14. Estimates of evolutionary divergence and codon based test of positive selection between ITS2 sequences of *Anopheles* species collected from Mizoram.

Table 15. Interactions between number of repeats, minimum free energy and elements of RNA secondary structures in ITS 2 regions of *Anopheles* species from Mizoram tested by analysis of variance, linear regression and t-test.

Table 16. Analysis of covariance for elements of RNA secondary structure adjusted by ITS 2 repeats for ten different *Anopheles* species in Mizoram.

Table 17. Type of repeats and copy number analysis of ITS2 *Anopheles* species from Mizoram by Spectral Repeat Finder (SRF) and ANOVA analysis of different type of repeats.