TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>BONAFIDE CERTIFICATE</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>ix</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 General Introduction and Need for the Study 1
1.2 Aim and Objectives of the Research Project 6

2. LITERATURE REVIEW

2.1 Cancer 7
2.2 Lung Cancer 7
 2.2.1 Lung Cancer Scenario in India 8
 2.2.2 Evolution and the Major Cause of Lung Cancer 9
 2.2.2.1 Other Causes 9
 2.2.3 Types of Lung Cancer 10
 2.2.3.1 Non-Small Cell Lung Cancer (NSCLC) 10
 2.2.3.2 Small Cell Lung Cancer (SCLC) 11
 2.2.4 Manifestations of Lung Cancer 11
 2.2.5 Treatment Options and Prognosis 11
 2.2.6 Lung Cancer Development Pathways 13
 2.2.7 Chemotherapy 13
Metastatic Cancer Development

2.3.14 Oxidative Stress in Induced Experimental cancer 33

Model and ATRA as Antioxidant

2.3.15 Function of ATRA in Inflammatory responses 35
2.3.16 ATRA as an Immunomodulant 36
2.3.17 Problems Associated with Free ATRA Treatment 37
2.3.18 Lipid Profile in ATRA Treatment and Cancer 37
2.3.19 Need for ATRA Encapsulation 38

2.4 Liposomes as Drug Delivery System and Other Uses 39

2.4.1 Liposomal Encapsulation Technology 41

and Its Characterization

2.4.2 List of Drugs 42
2.4.3 Liposome Targeting Cancer Sites 43

3. ENCAPSULATION OF ATRA IN DISTEAROYL-L-
PHOSPHATIDYLCHOLINE (DSPC)/CHOLESTEROL LIPOSOME
AND ITS CHARACTERIZATION

3.1 Introduction 46
3.2 Rationale 48
3.3 Objectives 49
3.4 Hypothesis to be analyzed 49
3.5 Materials and Methods 50

3.5.1 Chemicals 50
3.5.2 Preparation of Liposome with ATRA and without ATRA 50

3.5.2.1 Determination of the Size by Dynamic Light Scattering 50
3.5.2.2 Determination of the Percent Entrapped in the Liposome 50
3.5.3 Statistical analysis 50
4. ATRA LEVEL ASSAY AND LIPID PROFILE ASSAY IN LUNG CANCER MICE MODEL

4.1 Introduction

4.2 Rationale

4.3 Objectives

4.4 Hypothesis to be analyzed

4.5 Materials and Methods

4.5.1 Animals

4.5.2 Chemicals

4.5.3 Tumor Cell Line

4.5.4 ATRA Dose Selection for Treatment and Mode of Administration

4.5.5 In-vivo Drug Toxicity Studies in C57BL/6 Mice

4.5.6 Study of the Level of ATRA in Serum and Lung Tissue

4.5.6.1 Study Design and Experimental Groups

4.5.6.2 Sample Collection for ATRA Level Analysis

4.5.6.3 Sample Processing for HPLC Analysis

4.5.6.4 HPLC Analysis and the Pharmacokinetics Study of ATRA in Serum and Lung Tissue

4.5.6.5 Standard Curve Calibration for ATRA Level Analysis

4.5.7 Biochemical Assays for Lipid Profile

4.5.7.1 Serum Total Cholesterol Level Estimation

4.5.7.2 Serum HDL Cholesterol Level Estimation

4.5.7.3 Serum Triglyceride Level Estimation

4.5.8 Statistical analysis
4.6 Results

4.6.1 In-vivo Drug Toxicity Study Result in C57BL/6 Mice
4.6.2 Levels of ATRA by HPLC Analysis in the Serum and Lung Tissue
4.6.3 Results for Lipid Profile

4.7 Discussion

5. CHEMOTHERAPEUTIC EFFECT OF ENCAPSULATED ATRA ON EXPERIMENTAL LUNG METASTASIS AND ITS ASSOCIATED OXIDATIVE STRESS AS WELL AS IN-VITRO ANTIOXIDANT PROPERTY OF ATRA

5.1 Introduction
5.2 Rationale
5.3 Objectives
5.4 Hypothesis to be analyzed
5.5 Materials and Methods

5.5.1 Animals
5.5.2 Chemicals
5.5.3 Tumor Cell Line

5.5.4 In vitro Anti-Cancer Study for ATRA

5.5.4.1 Determination of the In-vitro Cytotoxic Activity of ATRA by Trypan Blue Dye Exclusion Method
5.5.4.2 Study of In vitro Cytotoxicity of ATRA Towards B16F-10 Melanoma Cells by MTT Assay

5.5.5 In-vivo Anti cancer Study of Encapsulated and Free ATRA in B16F10 Cells Implanted C57BL/6 Mice

5.5.5.1 Drug Administration
5.5.5.2 Study on Survival Days and Increase in Life Span of Lung Cancer Bearing C57BL/6 Mice
5.5.5.3 Determination of the Effect of ATRA on the Hematological Parameters, Body Weight and Relative Lung Weight

5.5.5.3.1 Total Leukocyte (WBC) count

5.5.5.3.2 Hemoglobin Estimation

5.5.5.4 Assay of Serum \(\gamma \)-Glutamyl Transpeptidase (\(\gamma \)-GT)

5.5.5.5 Study on the Lung Nodule Formation and Tumor Index

5.5.5.6 Histopathology Analysis

5.5.5.7 TUNEL Assay for Apoptotic DNA Fragmentation in Lung Tissue

5.5.5.8 Angiogenesis Study by Assay of Tumor Directed Capillary Vessel Formation

5.5.6 In-vivo Antioxidant Activity Study in Lung Cancer Model

5.5.6.1 Sample Collection

5.5.6.2 Protein Estimation

5.5.6.3 Assay of Superoxide Dismutase (SOD)

5.5.6.4 Assay of Catalase (CAT)

5.5.6.5 Assay of Glutathione Peroxidase (GPx)

5.5.6.6 Assay of Glutathione (GSH)

5.5.6.7 Estimation of Lipid Peroxidation (LPO)

5.5.6.8 Estimation of Nitric Oxide (NO)

5.5.7 In-vitro Antioxidant Study of ATRA

5.5.7.1 Determination of Superoxide Radical Scavenging Activity

5.5.7.2 Determination of Hydroxyl Radical Scavenging Activity
5.5.7.3 Determination of Lipid Peroxide Scavenging Activity

5.5.7.4 Assay of Nitric Oxide Scavenging Activity

5.5.8 Statistical Analysis

5.6 Results

5.6.1 The In-vitro Drug Cytotoxicity of ATRA by Trypan Blue and MTT Assays

5.6.2 Effect of Encapsulated ATRA on Survival Rate and Percentage Increase in Life Span of Experimental Mice

5.6.3 Effect of ATRA on Hematological Parameters in Lung Cancer Mice

5.6.4 Effect of ATRA on Body Weight and Relative Lung Weight

5.6.5 Level of Serum γ-Glutamyl Transpeptidase (γ-GT)

5.6.6 Effect of Encapsulated ATRA on Lung Tumor Nodule Formation and Tumor Index

5.6.7 Histopathologic Changes in Lung Cancer and Treated Groups

5.6.8 Effect of ATRA on Apoptosis in Experimental Mice by TUNEL Score

5.6.9 Effect of Encapsulated ATRA on In-vivo Angiogenesis

5.6.10 In-vivo Antioxidant Activity of ATRA

5.6.11 Results of the In-vitro Antioxidant Studies for Free ATRA

5.7 Discussion

6. ACTIVITY OF ENCAPSULATED ATRA AGAINST INFLAMMATION AND ITS IMMUNOMODULATORY EFFECT

6.1 Introduction

6.2 Rationale

6.3 Objectives
6.4 Hypothesis to be analyzed

6.5 Materials and Methods

6.5.1 Animals

6.5.2 Chemicals

6.5.3 Study of Anti-inflammatory Activity of Encapsulated ATRA

6.5.3.1 Study in Carrageenan Induced Acute Inflammation

6.5.3.2 Study in Formaldehyde Induced Chronic-Inflammation

6.5.3.3 Histopathology Analysis of Paw Tissues for Inflammatory Changes

6.5.4 Immunomodulation Study of Encapsulated ATRA

6.5.4.1 In vivo ATRA Toxicity Study in BALB/c Mice

6.5.4.2 Preparation of Sheep Red Blood Cells (SRBC) and Host Sensitization

6.5.4.3 Study Design for Immunomodulation

6.5.4.4 Determination of the Effect of ATRA on Total WBC Count

6.5.4.5 Determination of the Relative Organ Weight

6.5.4.6 Determination of the Bone Marrow Cellularity (BMC)

6.5.4.7 Determination of α-esterase Activity

6.5.5 Determination of Effect of ATRA on Delayed Type Hypersensitivity (DTH)

6.5.6 Statistical Analysis

6.6 Results

6.6.1 Effect of Encapsulated ATRA on Carrageenan Induced Paw Thickness and Histology Changes
6.6.2 Effect of Encapsulated ATRA on Formaldehyde Induced Paw Oedema 134
6.6.3 *In-vivo* Drug Toxicity in BALB/c Mice 134
6.6.4 Effect of ATRA on Total WBC Count 134
6.6.5 Effect of ATRA on Relative Organ Weight for Immunomodulatory Activity 135
6.6.6 Effect of ATRA on Bone Marrow Cellularity and α-esterase Positive Cells 135
6.6.7 Effect of ATRA on Delayed Type Hypersensitivity (DTH) Reaction 136
6.7 Discussion 140

7. **CONCLUSION AND SCOPE OF THE STUDY** 147

REFERENCES 149
LIST OF PUBLICATIONS 217
CURRICULUM VITAE 219