TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>BONAFIDE CERTIFICATE</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>ix</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 Out line of thesis | 1 |
1.2 Scope of the study | 5 |
1.3 Hypothesis | 5 |
1.4 The objective of the study | 6 |

2. LITERATURE REVIEW

2.1 Cancer and its prognosis | 7 |
2.2 Immune response and cancer | 13 |
2.3 Immune evasion mechanism to cancer | 14 |
2.4 Cytokine therapy in cancer | 15 |
2.5 Free radicals, ROS and cancer | 17 |
2.6 Oxidative stress and cancer | 19 |
2.7 Intra-cellular antioxidant systems and cancer | 20 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 Management of cancer</td>
<td>23</td>
</tr>
<tr>
<td>2.9 Inflammatory bowel disease</td>
<td>26</td>
</tr>
<tr>
<td>2.10 Causes of Inflammatory bowel disease</td>
<td>27</td>
</tr>
<tr>
<td>2.11 Crohn's disease</td>
<td>27</td>
</tr>
<tr>
<td>2.12 Ulcerative colitis</td>
<td>28</td>
</tr>
<tr>
<td>2.13 Genetic and environmental factors of ulcerative colitis</td>
<td>31</td>
</tr>
<tr>
<td>2.14 Pathophysiology of ulcerative colitis</td>
<td>31</td>
</tr>
<tr>
<td>2.15 Inflammatory mediators in ulcerative colitis</td>
<td>34</td>
</tr>
<tr>
<td>2.16 Immunomodulators and natural immunomodulators</td>
<td>34</td>
</tr>
<tr>
<td>2.17 Mangroves</td>
<td>38</td>
</tr>
<tr>
<td>2.18 Global distribution of mangroves</td>
<td>38</td>
</tr>
<tr>
<td>2.19 Native</td>
<td>39</td>
</tr>
<tr>
<td>2.20 Mangroves in India</td>
<td>39</td>
</tr>
<tr>
<td>2.21 Biodiversity</td>
<td>42</td>
</tr>
<tr>
<td>2.22 Medicinal Properties of Rhizophora</td>
<td>46</td>
</tr>
<tr>
<td>2.23 Condensed tannin content of R. apiculata</td>
<td>47</td>
</tr>
<tr>
<td>2.24 Therapeutic properties of R. apiculata</td>
<td>48</td>
</tr>
<tr>
<td>3. PHYTOCHEMICAL SCREENING OF THE METHANOLIC EXTRACT OF MANGROVE - RHIZOPHORA APICULATA</td>
<td>51</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>53</td>
</tr>
<tr>
<td>3.2 Materials and methods</td>
<td>53</td>
</tr>
<tr>
<td>3.2.1 Plant collection</td>
<td>53</td>
</tr>
<tr>
<td>3.2.2 Extract preparation</td>
<td>53</td>
</tr>
<tr>
<td>3.2.3 GC/MS analysis</td>
<td>54</td>
</tr>
<tr>
<td>3.2.4 LC/MS analysis</td>
<td>54</td>
</tr>
<tr>
<td>3.3 Results</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1 GC/MS analysis of the R. apiculata methanolic extract</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2 LC/MS analysis of the R. apiculata methanolic extract</td>
<td>55</td>
</tr>
</tbody>
</table>
4. INVESTIGATION OF THE ANTI-INFLAMMATORY ACTIVITY OF RHIZOPHORA APICULATA

4.1 Introduction 63

4.2 Materials and methods 65

4.2.1 Plant collection 65

4.2.2 Animals 66

4.2.3 Chemicals 66

4.2.4 Extract preparation 66

4.2.5 Evaluation of anti-inflammatory effect of *R. apiculata* against carrageenan and formalin induced paw edema 67

4.2.6 Carrageenan regimen 67

4.2.7 Formalin regimen 67

4.2.8 Determination the effect of *R. apiculata* on serum iNOS, cyclooxygenase-2, prostaglandin E-2 during carrageenan and formalin induced inflammation 68

4.2.9 Statistical analysis 68

4.3 Results 68

4.3.1 Anti-inflammatory activity of *R. apiculata* on carrageenan and formalin induced paw edema 68

4.3.2 Carrageenan model 68

4.3.3 Formalin model 69

4.3.4 Effect of *R. apiculata* on serum prostaglandin E-2 during carrageenan induced inflammation 72

4.3.5 Effect of *R. apiculata* on serum prostaglandin E-2 during formalin induced inflammation 72

4.3.6 Effect of *R. apiculata* on serum COX-2 during carrageenan induced inflammation 72
4.3.7 Effect of R. apiculata on serum COX-2 during formalin induced inflammation

4.3.8 Effect of R. apiculata on serum iNOS during carrageenan induced inflammation

4.3.9 Effect of R. apiculata on serum iNOS during formalin induced Inflammation

4.4 Discussion

5. INVESTIGATION OF IMMUNOMODULATORY EFFICACY OF RHIZOPHORA APICULATA

5.1 Introduction

5.2 Materials and methods

5.2.1 Plant collection

5.2.2 Animals

5.2.3 Chemicals

5.2.4 Extract preparation

5.2.5 Determination of the effect of R. apiculata on hematological Parameters

5.2.6 Determination of the effect of R. apiculata on the relative organ weight

5.2.7 Determination of the effect of R. apiculata on bone marrow cellularity and α-esterase activity

5.2.8 Determination of Phagocytic Index

5.2.9 Statistical analysis

5.3 Results

5.3.1 Effect of R. apiculata on total WBC count and hemoglobin level

5.3.2 Effect of R. apiculata on the relative organ weight
5.3.3 Effect of *R.apiculata* on bone marrow cellularity and α-esterase activity

5.3.4 Effect of *R.apiculata* on Phagocytic Index

5.4 Discussion

6. INVESTIGATION OF THE ANTI-TUMOR ACTIVITY OF *RHIZOPHORA APICULATA*

6.1 Introduction

6.2 Materials and methods
 6.2.1 Plant collection
 6.2.2 Animals
 6.2.3 Cell lines
 6.2.4 Chemicals
 6.2.5 Extract preparation
 6.2.6 Determination of the effect of *R. apiculata* on hematological parameters and survival rate during solid tumor development
 6.2.7 Determination of the effect of *R. apiculata* on the tumor volume during solid tumor development
 6.2.8 Determination of the effect of *R. apiculata* on serum gamma-glutamyl transpeptidase (GGT), glutathione (GSH), nitric oxide (NO) level and TNF-α level during solid tumor development
 6.2.9 Effect of *R. apiculata* on the body weight during solid tumor development
 6.2.10 Statistical analysis

6.3 Result
 6.3.1 Effect of *R. apiculata* on the hematological parameters and survival rate during solid tumor development
 6.3.2 Effect of *R.apiculata* on the tumor volume during solid tumor development
6.3.3 Effect of *R. apiculata* on body weight during solid development 118
6.3.4 Effect of *R. apiculata* on serum GGT, NO, GSH and TNF-α level during solid tumor development

6.4 Discussion 122

7. INVESTIGATION OF THE ANTI-METASTATIC EFFECT OF *RHIZOPHORA APICULATA* 125

7.1 Introduction 125

7.2 Material and methods 128
7.2.1 Plant collection 128
7.2.2 Experimental animals 128
7.2.3 Cell lines 128
7.2.4 Chemicals and Kits 129
7.2.5 Extract preparation 129
7.2.6 Experimental design 129
7.2.7 Determination of the effect of *R. apiculata* on the serum NO level during metastasis 130
7.2.8 Determination of the effect of *R. apiculata* on the serum GGT level during metastasis 130
7.2.9 Determination of the effect of *R. apiculata* on the serum sialic acid level during metastasis 130
7.2.10 Determination of the effect of *R. apiculata* on lung collagen hydroxyproline, hexosamine and uronic acid during metastasis 131
7.2.11 Determination of the effect of *R. apiculata* on the survival rate of metastatic tumor bearing animals 132
7.2.12 Histopathological examination 132
7.2.13 Statistical analysis 133

7.3 Results 133
7.3.1 Effect of *R. apiculata* on the serum NO and GGT level during metastasis 133
7.3.2 Effect of *R. apiculata* on serum sialic acid, lung hydroxyproline, hexoamine and uronic acid during metastasis 135
7.3.3 Effect of *R. apiculata* on the lung nodule formation and survival of animals 137
7.3.4 Histopathological analysis 137

7.4 Discussion 140

8. EVALUATION OF THE CHEMOPROTECTIVE EFFECT OF *RHIZOPHORA APICULATA* AGAINST CYCLOPHOSPHAMIDE INDUCED TOXICITY 145

8.1 Introduction 145
8.2 Materials and methods 146
8.2.1 Plant collection 146
8.2.2 Animals 147
8.2.3 Chemicals 147
8.2.4 Cell lines 147
8.2.5 Extract preparation 148
8.2.6 Determination of the effect of *R. apiculata* on the hematological parameters during CTX induced toxicity 148
8.2.7 Determination the effect of *R. apiculata* on the relative organ weight during CTX induced toxicity 149
8.2.8 Determination of the effect of *R. apiculata* on the bone marrow cellularity and α-esterase activity during CTX induced toxicity 149
8.2.9 Determination of the effect of *R. apiculata* on the serum NO and GSH during CTX induced toxicity 149
8.2.10 Statistical analysis 150

8.3 Results 150
8.3.1 Effect of *R. apiculata* on the total WBC count during CTX induced toxicity 150
8.3.2 Effect of *R. apiculata* on the bone marrow cellularity and α-esterase activity during CTX induced toxicity 153
8.3.3 Effect of *R. apiculata* on the relative organ weight during CTX induced toxicity 155
8.3.4 Effect of *R. apiculata* on the serum NO and GSH levels during CTX induced toxicity 157
8.4 Discussion 160

9. **EFFECT OF RHIZOPHORA APICULATA AGAINST ACETIC ACID INDUCED ULCERATIVE COLITIS** 163

9.1 Introduction 163
9.2 Materials and methods 165
9.2.1 Plant collection 165
9.2.2 Animals 165
9.2.3 Chemicals 166
9.2.4 Extract preparation 166
9.2.5 Induction of colitis to the experimental animals 166
9.2.6 Assessment of colitis 167
9.2.7 Biochemical assays 169
9.2.8 Determination of the effect of *R. apiculata* on colonic SOD level during ulcerative colitis 169
9.2.9 Determination of the effect of *R. apiculata* on colonic GSH content during ulcerative colitis 169
9.2.10 Determination of the effect of *R. apiculata* on serum NO activity during ulcerative colitis 170
9.2.11 Determination of the effect of *R. apiculata* on colonic LPO concentration during ulcerative colitis 170
9.2.12 Determination of the effect of *R. apiculata* on colonic MPO, TNF-α and iNOS activity during ulcerative colitis

9.2.13 Determination of the effect of *R. apiculata* on serum LDH and COX-2 activity during ulcerative colitis

9.2.14 Histopathology analysis

9.2.15 Statistical analysis

9.3 Results

9.3.1 Clinical and macroscopic assessment of colitis by scoring

9.3.2 Effect of *R. apiculata* on colonic tissue SOD level during ulcerative colitis

9.3.3 Effect of *R. apiculata* on serum NO level during ulcerative colitis

9.3.4 Effect of *R. apiculata* on reduced GSH level during ulcerative colitis

9.3.5 Effect of *R. apiculata* on LPO level during ulcerative colitis

9.3.6 Effect of *R. apiculata* on MPO activities during ulcerative colitis

9.3.7 Effect of *R. apiculata* on TNF-α level during ulcerative colitis

9.3.8 Effect of *R. apiculata* on iNOS level during ulcerative colitis

9.3.9 Effect of *R. apiculata* on serum LDH activity during ulcerative colitis

9.3.10 Effect of *R. apiculata* on serum COX-2 during ulcerative colitis

9.3.11 Histopathology analysis

9.4 Discussion
10. SUMMARY AND CONCLUSION 200
REFERENCES 205
LIST OF PUBLICATIONS 246
CURRICULUM VITAE 250
PUBLICATION REPRINTS 251