<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Advantages of room temperature solid state metathesis route</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Planetary ball mill</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Factors influencing the milling process</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>The flowchart for the synthesis of phosphor powder by mechanochemically assisted SSM reaction route at room temperature</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Powder XRD patterns of CaMoO$_4$:xEu$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1mol)</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>FTIR spectrum of CaMoO$_4$:xEu$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1mol)</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>PLE spectrum of CaMoO$_4$:xEu$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 1mol) phosphors monitored at 615 nm</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>Photoluminescence emission spectrum of CaMoO$_4$:xEu$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1mol) phosphors monitored at 392 nm</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of red emission intensities of CaMoO$_4$:x Eu$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1mol) phosphors under 392 nm and 462 nm excitation as a function of Eu$^{3+}$ concentration</td>
<td>33</td>
</tr>
</tbody>
</table>
4.6 DRS of CaMoO$_4$:xEu$^{3+}$ (x = 0.02, 0.08 and 0.1 mol) Phosphors

4.7 CIE chromaticity diagram for CaMoO$_4$: 0.08Eu$^{3+}$ Phosphor ($\lambda_{ex}$=392 nm)

4.8 (a) Room temperature luminescent decay curve of $^5D_0 \rightarrow ^7F_2$ transitions at 615 nm of Eu$^{3+}$ ions of CaMoO$_4$:0.08Eu$^{3+}$ phosphor
(b) SEM image of CaMoO$_4$: 0.08Eu$^{3+}$
(c) Particle size distribution of CaMoO$_4$:0.08Eu$^{3+}$

4.9 PL Spectrum of CaMoO$_4$:0.08Eu$^{3+}$ (SSM prepared) phosphor, commercial Y$_2$O$_2$S:Eu$^{3+}$ phosphor and CaMoO$_4$:0.08Eu$^{3+}$ (SSR prepared) phosphors for comparison

5.1 XRD patterns of CaMoO$_4$:xTb$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1 mol)

5.2 (a) Raman spectra of CaMoO$_4$:0.08Tb$^{3+}$.
(b) FTIR spectra of CaMoO$_4$:0.08Tb$^{3+}$ phosphor.
(c) SEM image of CaMoO$_4$:0.08Tb$^{3+}$ phosphor.
(d) Particle size distribution of CaMoO$_4$:0.08Tb$^{3+}$ phosphor

5.3 (a) The excitation spectrum of CaMoO$_4$:0.08Tb$^{3+}$ at the emission wavelength of 545 nm.
(b) The emission spectrum of Ca$_{1-x}$MoO$_4$:xTb$^{3+}$ (x = 0.02 (▲), 0.08 (●) and 0.1 (■) mol)
5.4  (a) The luminescence decay of the transition at 546 nm of 0.08 mol Tb$^{3+}$ doped CaMoO$_4$ phosphor sample
    (b) The CIE chromaticity diagram for the as prepared CaMoO$_4$:0.08Tb$^{3+}$ phosphor

6.1 The XRD patterns of CaWO$_4$:xTb$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1 mol)

6.2 The XRD patterns of SrWO$_4$:xTb$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1 mol)

6.3 Selected SEM image of (a) CaWO$_4$:0.08Tb$^{3+}$ (b) SrWO$_4$:0.08Tb$^{3+}$

6.4 Raman spectra of CaWO$_4$:xTb$^{3+}$ (x = 0, 0.02 mol)

6.5 Raman spectra of SrWO$_4$:xTb$^{3+}$ (x = 0, 0.02 mol)

6.6 FTIR spectra of CaWO$_4$:xTb$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1 mol)

6.7 FTIR spectra of SrWO$_4$:xTb$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1 mol)

6.8 The PLE ($\lambda_{em} = 545$ nm) and emission ($\lambda_{ex} = 261$ nm) spectra of CaWO$_4$:xTb$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1 mol)

6.9 The PLE ($\lambda_{em} = 545$ nm) and emission ($\lambda_{ex} = 259$ nm) spectra of SrWO$_4$:xTb$^{3+}$ (x = 0.02, 0.04, 0.06, 0.08 and 0.1 mol)
6.10  DRS of CaWO₄:0.08Tb³⁺, SrWO₄:0.06Tb³⁺ phosphors.

6.11  (a) Luminescence decay curve of CaWO₄:0.08Tb³⁺ phosphor.
       (b) Particle size distribution of CaWO₄:0.08Tb³⁺ phosphor.

6.12  (a) Luminescence decay curve of SrWO₄:0.06Tb³⁺ phosphor.
       (b) Particle size distribution of SrWO₄:0.06Tb³⁺ phosphor

6.13  CIE chromaticity diagram of CaWO₄:0.08 Tb³⁺ (●) and SrWO₄: 0.06Tb³⁺ (●)
       Phosphors

6.14  Comparison of emission spectra of CaWO₄:0.08Tb³⁺, SrWO₄: 0.08Tb³⁺ and
       LaPO₄:Ce, Tb

7.1   Powder XRD patterns of Li₃Ba₂Gd₃(MoO₄)₈:xEu³⁺
       (x = 0.01, 0.03, 0.05, 0.07 and 0.09 mol)

7.2   Particle size distribution of Li₃Ba₂Gd₃(MoO₄)₈:0.07Eu³⁺ phosphor

7.3   EDX spectrum of Li₃Ba₂Gd₃(MoO₄)₈:0.07Eu³⁺ phosphor

7.4   Selected SEM images of
       (a) Li₃Ba₂Gd₃(MoO₄)₈ (b) Li₃Ba₂Gd₃(MoO₄)₈:0.07Eu³⁺.
7.5 FTIR spectrum of Li$_3$Ba$_2$Gd$_3$(MoO$_4$)$_8$:xEu$^{3+}$ (x = 0, 0.01 and 0.07 mol)

7.6 PLE spectrum of Li$_3$Ba$_2$Gd$_3$ (MoO$_4$)$_8$:xEu$^{3+}$ (x = 0.01, 0.03, 0.05, 0.07 and 0.09 mol) phosphors monitored at 615 nm

7.7 Photoluminescence emission spectrum of Li$_3$Ba$_2$Gd$_3$(MoO$_4$)$_8$: xEu$^{3+}$ (x = 0.01, 0.03, 0.05, 0.07 and 0.09 mol) phosphors under 395 nm excitation and the inset shows PL spectra of Li$_3$Ba$_2$Gd$_3$(MoO$_4$)$_8$:0.07Eu$^{3+}$ Phosphor

7.8 Comparison of red emission intensities of Li$_3$Ba$_2$Gd$_3$(MoO$_4$)$_8$:xEu$^{3+}$ (x = 0.01, 0.03, 0.05, 0.07 and 0.09 mol) phosphors under (a) 395 nm and (b) 464 nm excitation as a function of Eu$^{3+}$ concentration

7.9 CIE chromaticity diagram for Li$_3$Ba$_2$Gd$_3$(MoO$_4$)$_8$:0.07 Eu$^{3+}$ phosphor (λ$_{ex}$=395 nm)

7.10 Room temperature luminescent decay curve of $^5$D$_0$ → $^7$F$_2$ transitions at 615 nm of Eu$^{3+}$ ions of Li$_3$Ba$_2$Gd$_3$ (MoO$_4$)$_8$:0.07Eu$^{3+}$ phosphor

7.11 Excitation spectra of Y$_2$O$_2$S:Eu (curve a) and Li$_3$Ba$_2$Gd$_3$ (MoO$_4$)$_8$:0.07Eu$^{3+}$ (curve b) and emission spectra under 395 nm UV excitation (curve c for Y$_2$O$_2$S:Eu and curve d for Li$_3$Ba$_2$Gd$_3$(MoO$_4$)$_8$:0.07Eu$^{3+}$)
8.1 (a) The XRD patterns of undoped Li₃Ba₂Gd₃(MoO₄)₈ and Li₃Ba₂Gd₃(MoO₄)₈:0.08Tb³⁺
(b) EDX spectrum of Li₃Ba₂Gd₃(MoO₄)₈:0.08Tb³⁺ Phosphor

8.2 PL excitation and emission spectra of Li₃Ba₂Gd₃(MoO₄)₈:x Tb³⁺ (x = 0.02, 0.04, 0.06, 0.08 and 0.10 mol)

8.3 (a) CIE chromaticity diagram of CaWO₄:0.08Tb³⁺, SrWO₄:0.06Tb³⁺ and Li₃Ba₂Gd₃(MoO₄)₈:0.08Tb³⁺
(b) Fluorescent decay curve for the ⁵D₄ state of Tb³⁺ in the Li₃Ba₂Gd₃(MoO₄)₈:0.08Tb³⁺ sample upon 297 nm excitation by monitoring the emission wavelength at 546 nm
(c) Comparison of emission spectra of Li₃Ba₂Gd₃(MoO₄)₈:0.08 Tb³⁺ and LaPO₄: Ce, Tb

9.1 Powder XRD patterns of Li₃Ba₂Gd₃(MoO₄)₈:xPr³⁺ (x = 0.01 and 0.09 mol) and Li₃Ba₂Gd₃(MoO₄)₈:xSm³⁺ (x = 0.01 and 0.09 mol)

9.2 The PLE (λ_em = 645 nm) spectra and PL (λ_ex = 450 nm) spectra of Li₃Ba₂Gd₃(MoO₄)₈:xPr³⁺ (x= 0.01, 0.03, 0.05, 0.07 and 0.09 mol)

9.3 The PLE (λ_em = 605 nm) spectra and the photoluminescence emission (λ_ex = 404 nm) spectra of Li₃Ba₂Gd₃(MoO₄)₈:xSm³⁺ (x= 0.01, 0.03, 0.05, 0.07 and 0.09 mol)
9.4  CIE chromaticity diagram for
\[ \text{Li}_3\text{Ba}_2\text{Gd}_3(\text{MoO}_4)_8:0.07\text{Pr}^{3+}, \]
\[ \text{Li}_3\text{Ba}_2\text{Gd}_3(\text{MoO}_4)_8:0.07\text{Sm}^{3+}, \]
\[ \text{CaMoO}_4:\text{Eu}^{3+}, \text{Y}_2\text{O}_2\text{S}:\text{Eu}^{3+} \] phosphors.

9.5  (a) Room temperature luminescent decay curves of \(^3\text{P}_0 \rightarrow \ ^3\text{F}_2\) transitions at 645 nm of \text{Pr}^{3+} ions of \(\text{Li}_3\text{Ba}_2\text{Gd}_3(\text{MoO}_4)_8:0.07\text{Pr}^{3+}\) phosphor

(b) Particle size distribution of \(\text{Li}_3\text{Ba}_2\text{Gd}_3(\text{MoO}_4)_8:0.07\text{Pr}^{3+}\).

9.6  (a) Room temperature luminescent decay curves of \(^4\text{G}_{5/2} \rightarrow \ ^6\text{H}_{7/2}\) transitions at 605 nm of \text{Sm}^{3+} ions of \(\text{Li}_3\text{Ba}_2\text{Gd}_3(\text{MoO}_4)_8:0.07\text{Sm}^{3+}\) phosphor

(b) Particle size distribution of \(\text{Li}_3\text{Ba}_2\text{Gd}_3(\text{MoO}_4)_8:0.07\text{Sm}^{3+}\).

9.7  Comparison of emission spectra of
\[ \text{Li}_3\text{Ba}_2\text{Gd}_3(\text{MoO}_4)_8:0.07\text{Pr}^{3+}, \text{Li}_3\text{Ba}_2\text{Gd}_3(\text{MoO}_4)_8:0.07\text{Sm}^{3+} \]
and \(\text{Y}_2\text{O}_2\text{S}:\text{Eu}^{3+}\) phosphors.