TABLE OF CONTENTS

- **Acknowledgement**: i-ii
- **Abbreviations**: iii-iv

CHAPTER 1: INTRODUCTION
1.1 Aims and Objectives: 1

CHAPTER 2: REVIEW OF LITERATURE
2.1 Telomerase and telomere
2.1.1 Background of telomere and telomerase: 4
2.1.2 Telomere: Structure and function: 5
2.1.2.1 Protein interacting with telomere: Shetrin complex: 5
2.1.3 Telomerase: 10
2.1.3.1 Telomerase Reverse Transcriptase: Structure and Function: 11
2.1.3.2 Promoter structure of hTERT: 14
2.1.3.3 Telomerase RNA: Structure and Function: 15
2.1.3.4 Telomerase in Stem Cells and Cancer Stem Cells: 16
2.1.3.4.1 Mesenchymal Stem Cells: 17
2.1.3.4.2 Embryonic Stem Cells: 17
2.1.3.4.3 Cancer Stem Cells: 18
2.1.3.5 DKC: Disease Due to Lack of Telomerase in Stem Cells: 18
2.1.3.6 Function of Telomerase Beyond Telomeric DNA Reverse Transcription: 19
2.1.3.7 Telomerase as Potential Therapeutic Target: 28
2.2 The RNA world: 33
2.2.1 RNA Structure Prediction: 33
2.2.1.1 RNA Secondary Structure: 34
2.2.1.2 Tertiary Structure of RNA: 36
2.2.2 RNA Aptamer: 37
2.2.2.1 Designing Library for DNA and RNA aptamer: 38
2.2.2.2 The SELEX Method: 39
2.2.2.2.1 Background Partitioning: 40
2.2.2.2.2 Partitioning of High Affinity Binding RNA: 40
2.2.2.2.3 Exponential Enrichment: 41
2.2.2.2.4 Iterative Round of Selection: 41
2.2.2.3 Mathematical Aspect of SELEX: 42
2.2.2.4 Computational SELEX: 43
2.2.2.5 Cell-SELEX: 43
2.2.2.6 SELEX for Ribozyme: 44
2.2.2.7 Aptamer Selection by SPR: 44
2.2.2.8 Aptamer Against Peptide: 44
2.2.2.9 Peculiar Feature of RNA Aptamers as Therapeutic Molecule: 46
2.2.2.10 Applications of RNA Aptamers: 47
2.2.2.11 Recent Advancement of RNA Aptamer Research: 48

CHAPTER 3: MATERIALS AND METHODS
3.1 Materials: 50
3.1.1 Chemicals, Stock Solutions, Reagents and Buffers: 50
3.2 METHODS: 55
3.2.1 General Methods: 55
3.2.1.1 Plasmid Isolation (Midi Preparation): 55
3.2.1.2 Preparation of Competent Cells and their Transformation: 56
3.2.1.3 Agarose Gel Electrophoresis: 56
3.2.1.4 DNA extraction from agarose gels: 57
3.2.1.5 Measurement of DNA and RNA Concentrations: 57
3.2.1.6 Cell Culture and Sub-culturing: 57
3.2.1.7 Determining the Viability of Cells: 58
3.2.1.8 Freezing Human Cells grown in Monolayer Culture: 58
3.2.1.9 Thawing and Recovering Human Cells: 58
3.2.1.10 Analysis of Transfection Efficiencies by Fluorescence Microscopy………………… 58
3.2.1.11 RNA extraction ... 59
3.2.1.12 Statistical Analysis.. 59

3.2.2 DEVELOPMENT OF TOOLS FOR hTERT EXPRESSION……………………………….. 59

3.2.2.1 Full Length hTERT Expression in Eukaryotic Cell (insect cell)……………………… 59
 3.2.2.1.1 The Bac-to-Bac Baculovirus Expression System.. 59
 3.2.2.1.2 Insect Cells S9 ... 61
 3.2.2.1.3 Culturing, Freezing and Reviving of S9 Cells.. 61
 3.2.2.1.4 Recombinant Donor Plasmid pFastBac1-hTERT construct......................... 61
 3.2.2.1.5 Transformation of pFastBac1-hTERT into DH10Bac E.coli and transposition
 of recombinant pFastBac1 clone into bacmid of DH10Bac strain 62
 3.2.2.1.6 Bacmid DNA Isolation (Mini Preparation)... 62
 3.2.2.1.7 Screening of Clones by PCR Amplification of GFP-hTERT Using M13 F
 and R Primers.. 63
 3.2.2.1.8 Transfection of Recombinant Bacmid into SF9 Cells............................... 64
 3.2.2.1.9 Amplifying the Viral Stock .. 65
 3.2.2.1.10 Infection of SF9 Cells .. 65
 3.2.2.1.11 Characteristics of Infected Cells .. 65
 3.2.2.1.12 Baculovirus Phage Amplification ... 65
 3.2.2.1.13 Plaque Assay for the Determination of Viral Titre 66
 3.2.2.1.14 Protein Expression in Baculovirus System .. 66
 3.2.2.1.15 Protein Quantification ... 66
 3.2.2.1.16 Bradford Assay ... 66
 3.2.2.1.17 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS–PAGE) 67
 3.2.2.1.18 Silver Staining of the SDS-PAGE Gel ... 68
 3.2.2.1.19 Western Blotting of GFP-hTERT Proteins ... 66
 3.2.2.1.19.1 Electroblotting of the Gels from SDS-PAGE 69
 3.2.2.1.19.2 Immunostaining of the PVDF Membranes 69
 3.2.2.2 RID2 Domain of hTERT Expression in Bacterial system........................... 70
 3.2.2.2.1 Cloning of RID2 Domain of hTERT in to pET28a Vector 70
 3.2.2.2.1.1 pET System .. 70
 3.2.2.2.1.2 PCR amplification of RID2 from full length hTERT cDNA clone 71
 3.2.2.2.1.3 Restriction double digestion of vector and insert 72
 3.2.2.2.1.4 Ligation of insert into vector DNA ... 72
 3.2.2.2.1.5 Screening of clones .. 72
 3.2.2.2.2 Expression of RID2 domain of hTERT .. 72
 3.2.2.2.3 Sonication for Lysing Cells .. 73
 3.2.2.2.4 SDS-PAGE ... 73

3.2.3 SELECTION OF RNA APTAMERS RECOGNIZING A PEPTIDE REPRESENTING
 RID2 DOMAIN OF hTERT .. 73
 3.2.3.1 Solid Phase Synthesis of Peptides ... 73
 3.2.3.2 Analytical RP-HPLC of Peptides ... 74
 3.2.3.3 Biotinylation of Peptide .. 74
 3.2.3.4 RNA pool .. 75
 3.2.3.5 In vitro Selection ... 76
 3.2.3.6 Generation of Nucleic Acid Library ... 76
 3.2.3.7 PCR amplification of DNA library .. 76
 3.2.3.8 In Vitro Transcription Kit .. 77
 3.2.3.9 Purification of RNA .. 77
 3.2.3.10 Column Purification and Percentage Incorporation of Radioactive Label ... 77
 3.2.3.11 SELEX ... 78
 3.2.3.11.1 Immobilization of Peptide on Beads ... 78
 3.2.3.11.2 Negative Selection for Removal of Beads Binding RNA Molecules 78
 3.2.3.11.3 Selection of hTERT Binding RNA Aptamer 78
 3.2.3.11.4 Elution Scheme ... 78
 3.2.3.11.5 RT PCR of eluted RNA ... 79
 3.2.3.12 Denaturing Urea–Polyacrylamide Gel Electrophoresis (PAGE) 80
3.2.3.13 Cloning and Sequencing of hTERT Aptamers .. 80
3.2.3.14 Screening of Clones .. 81
3.2.3.15 Automated DNA Sequencing ... 81
3.2.3.16 Sequence Analysis and Phylogenetic Studies ... 81
3.2.3.17 Secondary Structures Prediction ... 82
3.2.3.18 Tertiary Structure Prediction of hTERT-binding RNA Aptamers 82
3.2.3.19 RNA Tertiary Structure Modeling Using MC-SYM Program 82
3.2.3.20 Homology Modelling of hTERT-Derived Peptide 82
3.2.3.21 Docking Studies of hTERT-binding RNA Aptamers with hTERT-Derived Peptide .. 83
3.2.3.22 RNA Binding Assays and In Vitro Kinetic Characterization 83
3.2.3.22.1 Circular Dichroism (CD) Studies of hTERT-binding RNA Aptamers 83
3.2.3.22.2 RNA Electrophoretic Mobility Shift Assay (RNA-EMSA) 84
3.2.3.23 BLAST .. 84
3.2.3.24 Cloning of hTERT-binding RNA Aptamer in Expression Vectors pTZU6+27 .. 84
3.2.3.24.1 PCR Reaction with U6 primers .. 84
3.2.3.24.2 Restriction Digestion of Vector and Insert .. 85
3.2.3.24.3 Ligation of Insert into Vector DNA ... 86
3.2.3.24.4 Screening of Clones .. 86
3.2.3.24.5 hTERT RNA Aptamers –pTZU6+27 Transfection 86
3.2.3.25 Reverse Transcription PCR ... 87
3.2.3.26 Flow Cytometry of the Cells .. 88
3.2.3.27 Cell Cycle Analysis .. 88
3.2.3.28 Knocking Down the Expression of HTERT by RNA Interference 88
3.2.3.28.1 siRNA Duplexes .. 89
3.2.3.28.2 Resuspension of siRNA ... 89
3.2.3.28.3 Transfection of siRNA Against h-TERT in MCF-7 Cells 89
3.2.3.28.4 Real Time RT-PCR ... 89
3.2.3.28.5 Cloning of shRNA hTR and hTERT in to p199 and p203 Vector 91
3.2.3.28.6 PCR for Amplification of Insert .. 92
3.2.3.28.7 Phenol Chloroform Purification of Amplified shRNA 92
3.2.3.28.8 Double digestion of purified insert (shRNA) and plasmid DNA with Xho1 And EcoRI ... 93
3.2.3.28.9 Ligation of shRNA Insert in to p203 digested vector 93
3.2.3.28.10 Screening of Transformants by PCR method 94
3.2.3.28.11 Cell Culture ... 94
3.2.3.28.12 Dox Stock Solution .. 94
3.2.3.28.13 Transfection of Cloned Vectors in Mammalian Cells 94
3.2.3.28.14 Determination of Telomerase Activity by Conventional TRAP Assay ... 94
3.2.3.28.15 Sample Preparation .. 94
3.2.3.28.16 Cell Lysis and Protein Extraction for TRAP 95
3.2.3.28.17 Cell Lysis Buffer for TRAP ... 95
3.2.3.28.18 Primer dilutions and primer mix ... 95
3.2.3.28.19 Composition of 10X TRAP PCR Buffer ... 96
3.2.3.28.20 TS primer labeling .. 96
3.2.3.28.21 TRAP PCR .. 96
3.2.3.28.22 10% Non denaturing PAGE for TRAP .. 97
3.2.3.28.23 Determination of telomerase activity by TRAPeze kit 97
3.2.3.28.24 Polycrylamide Gel Electrophoresis .. 98
3.2.3.28.25 Metaphase Spread Preparation ... 98
3.2.3.28.26 Quantitative Fluorescence In Situ Hybridization (Q-FISH) 98
3.2.3.28.27 PNA Telomere Probes for FISH ... 98
3.2.3.28.28 Preparing the Telomere PNA probe .. 99
3.2.3.28.29 Fixation of Metaphase Slides .. 99
3.2.3.28.30 Hybridization with the Telomeric PNA Probes 100
3.2.3.28.31 Post-hybridization Wash .. 100
3.2.3.28.32 Image Capture .. 100
3.2.3.28.33 Genomic DNA Isolation from Cultured Mammalian Cells 100
3.2.3.29 Global Profiling of Gene Expression Pattern Following Knock... 100
CHAPTER 4: RESULTS AND DISCUSSION

4.1 DEVELOPMENT OF TOOLS FOR HTERT EXPRESSION

4.1.1 Result

4.1.1.1 Expression of hTERT fusion protein in Eukaryotic system

4.1.1.2 Bac-to-Bac baculovirus expression system

4.1.1.3 Recombinant bacmid preparation

4.1.1.4 Transfection of Insect Cells and Production of Baculovirus

4.1.1.5 Cloning and Expression of RID2 Domain of hTERT in Bacteria

4.1.2 Discussion

4.1.2.1 Baculovirus expression of hTERT fusion protein in insect cells

4.1.2.2 Expression of RID2 Domain of hTERT in Bacteria

4.2 RNA APTAMERS TARGETING A PEPTIDE REPRESENTING RID2 DOMAIN OF hTERT

4.2.1 RESULT

4.2.1.1 Selection of RNA aptamer binding with the hTERT derived peptide

4.2.1.2 Generation of Oligonucleotides Library

4.2.1.3 Systematic Evolution of Ligand by Exponential Enrichment (SELEX)

4.2.1.4 Cloning the Aptamers

4.2.1.5 Nucleotide Sequencing of Aptamer

4.2.1.6 Quasi Phylogenetic Studies of hTERT-binding RNA Aptamers

4.2.1.7 Class Wise Multiple Sequence Alignment of hTERT-binding RNA Aptamers

4.2.1.8 Secondary Structures Prediction of hTERT-binding RNA Aptamers

4.2.1.9 Structural Alignment and Comparisons

4.2.1.10 Tertiary Structures Prediction of hTERT-binding RNA Aptamers and Docking Studies

4.2.1.11 Homology of Aptamer Sequence with Natural Sequences

4.2.1.12 Kinetics of Aptamers-ligand Interaction

4.2.1.13 Cloning of hTERT-binding RNA Aptamers into RNA Expression Vector

4.2.1.14 Biological Effects of hTERT Aptamers in MCF 7 cell line

4.2.1.15 RT PCR shows Presence of hTERTapt RNA in Transfected MCF 7

4.2.1.16 Inhibition of Telomerase Activity by Cognate Aptamers

4.2.2 DISCUSSION

4.3 KNOCK DOWN THE EXPRESSION OF hTERT BY RNA INTERFERENCE

4.3.1 Result

4.3.1.1 siRNA mediated knock down the hTERT expression

4.3.1.2 Transfection of siRNA hTERT and hTR in to cultured mammalian cells

4.3.1.2.1 Analysis of hTR and hTERT expression using real time quantitative RT PCR
4.3.1.2 microRNA based system for polymerase II regulated RNA interference in mammalian cells...161
4.3.1.2.1 Tetracycline-regulated shRNA-mir expression.................................161
4.3.1.2.2 Construction of hTR and hTERT knock down vector.................................162
4.3.1.2.3 Biological effect of shRNA-hTERT and shRNA-hTR on cultured cells........169
4.3.1.2.4 Chromosomal analysis and QFISH of shRNA transfected cells..............173
4.3.1.2.5 Assay of telomerase activity in shRNA expressing cells......................173
4.3.2 Discussion...174

4.4 GLOBAL PROFILING OF GENE EXPRESSION PATTERN FOLLOWING KNOCK DOWN OF hTERT...176
4.4.1 Result...176
4.4.1.1 Transcription profiling of transfectants...176
4.4.1.2 Transcription profiling of siRNA and shRNA hTERT transfected MCF7 cells 176
4.4.1.3 RNA integrity assessment using Bioanalyzer...176
4.4.1.4 General transcriptomics of samples...179
4.4.1.5 Profile Plot..179
4.4.1.6 Differential Gene Expression Analyses..179
4.4.1.7 Principle Component Analysis (PCA)...180
4.4.1.8 Cluster Analysis of Data..182
4.4.1.9 Hierarchical Clustering..182
4.4.1.10 Enrichment analysis..185
4.4.1.11 Pathways map..185
4.4.1.12 Role of hTERT in the cell adhesion-plasmin signaling.........................186
4.4.1.13 Role of hTERT in Development: Angiotensin signaling via STATs........186
4.4.1.14 Transcription regulation network...187
4.4.1.15 Role of hTERT in the regulatory networks..191
4.4.2 Discussion...192

CHAPTER 5: GENERAL DISCUSSION..194

CHAPTER 6: SUMMARY AND CONCLUSION..198

CHAPTER 4: REFERENCES..201

APPENDIX A...215

APPENDIX B...217

PUBLICATIONS
Acknowledgement

I express my sincere gratitude to my supervisor Prof. Pramod K. Yadava for his valuable guidance, immense knowledge and support throughout my PhD. His suggestions were instrumental right from the inception to the completion of this study. He offered me the liberty, intellectual freedom and opportunity to purse the ideas in PhD under his able guidance. His inspiring words and constant encouragement have helped me to surpass difficult situations.

I would like to thank the past and present Deans of School of Life Sciences, Prof, P. K. Yadava, Prof. R. K. Kale, Prof. R. Madhubala and Prof. N. B. Sarin for providing me the necessary facilities for carrying out my work. I also thank Prof. R. K. Kale, Prof. B.C. Tripathy, Dr. Jaishree Paul, Dr. Samudrala Gourinath, Dr. Ajay Kumar Saxena, Dr. Shweta Saran, Dr. Rana P. Singh, Dr. Atul Kumar Johri, and Dr. Neelima Mondal taught me during course work and all other faculty members of the school for creating a vibrant intellectual atmosphere.

I thank my Doctoral Committee members, Prof. K. C. Upadhyaya, my supervisor and Dr. Ashwani Pareekh for their helpful suggestions and comments during my progress report presentations.

I gratefully acknowledge the technical staff of the Central Instrumentation facility, Alexander, B.A. Khan, S.K. Sharma, S. K. Mishra, R. Meena, Aslam, Mange Ram, Juginder Singh, Mahfooz Alam, Faiz Ahmed and Rakesh for ensuring the smooth functioning of the facility. I acknowledge the Advanced Instrumentation and Research Facility and the technical staff there, Dr. Charu for helping me to capture confocal microscopic pictures and Dr. Gajender Saini for CD experiment.

I cannot forget the company of my lab-mates who are the most cherished part during my PhD programme. I am very lucky to have them such as Dr. Suresh, Dr. Rahul Dev, Chanchal, Dr. Ashima, Dr. Jyoti Bala, Dr Pramod Kumar, Dr Ashutosh, Hussain, Abha, Baby, Amod, Deepak, Sankhajeet and Soubhagya. In spite of the ups and downs of PhD I can still remember the birthday parties, Shimla trip, late night tea at Ganga dhaba and our participation in Spandan (Cultural Events of SLS).

I have a deep respect and appreciation for Dr. Suresh Kumar. I admire his spirit of hard work, cheerful nature and vibrant personality. I feel fortunate for having encouragement and jolly support while all the phases of PhD. He is an extraordinary living database. You can search information related to any scientist, any paper, lab, funding, publications, awards and what not.

Special thanks to Rahul sir for organizing the arrangement of my stay during Cold Spring Harbor Laboratoty (CSHL) meeting New York USA and I still remember and cherish the memory of that trip to New York.

I must thank the non-teaching staff of the school, Meenu madam, Talwar Ji, Shiny, Ganguli Ji and the administrative officer- Dr. Sajjan Singh and others for the smooth functioning of the school office and for making official work simple for students. I thank our laboratory attendants, Chotelal ji and their help in the laboratory.
I express my gratitude to Prof. K. V. A. Ramaiah from Hyderabad central university for providing his lab facility for beculovirus expression system. I express my special thanks to Dr. Shamista Dey from Department of Biophysics, AIIMS for her generous help in providing us Surface Plasmon Resonance and peptide synthesis facility. I also extend this gratitude to Mr. Abhay from the same department for spending his valuable time in SPR experiments. I express my sincere thanks to Dr. Meraj for their support related to data analysis of microarray experiments.

I thank to Manish, Shafat and Sudhuman for their support, prompt availability at the time of need and nice co-operation to execute my work.

Friends and family are the most precious gift of life. I cannot forget the company of my school friend Deepak and I am thankful for his moral support during the difficult time. I, forever, highly thankful and admire to my friend, roommate and Manish for sharing such a magnificent and wonderful journey of nine years long from post-graduation to doctorate.

I thank to my batch mates Dr. Vibhor Gupta, Shafat Ali, Manish Goyal, Anil Mittal, Dr. Ajeet Mandal, Dr. Bhawana Chawala, Sanjeevani, Sudhuman Singh, Naveen Singh, Malika Singh, Dr. Shweta Agrawal and Neetu Singh for the memorable time, I spent with them. I am also extremely indebted to my HK group’s biomolecules Anil Verma, Kumar Sandeep, Deepak, Manish, Shafat, Sitaram and Ram Babu for having conversations or discussions on various topics. I shared their joy and lent me an ear when I needed. Without them my journey in JNU would have been dull.

I take this opportunity to sincerely acknowledge the University Grant Commission (UGC), Government of India, New Delhi, for providing financial assistance in the form of Junior/Senior Research Fellowship which buttressed me to perform my work comfortably.

No word is sufficient to express my deepest sense of regards to my parents Sh. Jitendra Pal Varshney and Mrs. Kamlesh Varshney for their understanding, affection and love and as of my source of inspiration. I take this opportunity to thank my sisters Yamini, Ragini and Mradu, brother-in-laws Hemchand Varshney and Deepak Gupta, nieces and nephew Tanisha, Rhidhima and Shorya for all the love and affection they shower me with, for being there for me at all times.

And, I have no word to express and explicate the thanks of the GOD for blessing because words are not sufficient.

Akhil Varshney
Abbreviations

Commonly Used Abbreviations and Symbols

Å Angstrom
a.a. Amino Acid
AcMNPV Autographa californica multiple nuclear polyhedrosis virus
APS Ammonium per sulphate
Amp Ampicillin
AP1 Activator protein 1
ATP Adenosine 5’-triphosphate
attTn Site that bacterial transposon Tn7 inserts at high frequency
Bisacrylamide N, N-methylene bisacrylamide
bp Base pair
BRIT Board of radiation and isotope technology
BSA Bovine serum albumin
BV Baculovirus
BEVS Baculovirus Expression System
CD Circular dichroism
cDNA Complimentary Deoxyribonucleic acid
Ci Curie
CONC Concentration
cpm counts per minute
DEPC Diethyl pyrocarbonate
DMEM Dulbeco’s modified eagle’s medium
DMSO Dimethylsufoxide
DNA Deoxyribonucleic acid
dNTP Deoxyribonucleoside triphosphate
dsDNA Double stranded DNA
DOX Doxycycline
DR Defined region of aptamer library
DTT Dithiothreiotol
E. coli Escherichia coli
EDTA Ethylene diamine tetra-acetic acid
EMSA Electrophoretic gel mobility shift assay
EtOH Ethanol
FACS Flow activator cell counter
FBS Fetal bovine serum
FCS Fetal calf serum
FGF2 Fibroblast growth factor 2
FITC Fluorescein isothiocynate
FSC Forward sideward scatter
g Gram
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GFP Green fluorescent protein
HA Hemagglutinin
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
hrs hours
hTERT Human telomerase reverse transcriptase
hTR Human telomerase RNA
IPTG Isopropyl-1-thio-D-galactoside
IVT In vitro transcription
Kb kilobase
KCl Potassium cholride
kDa Kilo dalton
Kd Dissociation constant
l Litre
lacI repressor of Lectose operon
LB Luria broth
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MALDI-TOF/MS</td>
<td>Matrix-assisted laser desorption/ionisation-time of flight/ mass spectrometry</td>
</tr>
<tr>
<td>MBP</td>
<td>Maltose binding protein</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple cloning site</td>
</tr>
<tr>
<td>Mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>miRNA</td>
<td>Micro RNA</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>ml</td>
<td>Mili liter</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NCCS</td>
<td>National centre for cell sciences, Pune</td>
</tr>
<tr>
<td>ng</td>
<td>Nano gram</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>nt</td>
<td>Nucleotides</td>
</tr>
<tr>
<td>NTP</td>
<td>Nucleotide triphosphate</td>
</tr>
<tr>
<td>Oligo</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td>O/N</td>
<td>Over night</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethyl glycol</td>
</tr>
<tr>
<td>pFastBac</td>
<td>Vector from Invitrogen</td>
</tr>
<tr>
<td>PH</td>
<td>Polyhedrin</td>
</tr>
<tr>
<td>P<sub>PH</sub></td>
<td>Polyhedrin promoter</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>pmol</td>
<td>Pico mole</td>
</tr>
<tr>
<td>PNK</td>
<td>Polynucleotide kinase</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>RNP</td>
<td>Ribonucleo protein</td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>rTA</td>
<td>Tetracycline controlled transactivator protein</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription-Polymerase chain reaction</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>Sec</td>
<td>Second</td>
</tr>
<tr>
<td>SELEX</td>
<td>Systematical Evolution of Ligands by Exponential Enrichment</td>
</tr>
<tr>
<td>Sf</td>
<td>Spodoptera frugiperda</td>
</tr>
<tr>
<td>shRNA</td>
<td>Short-hairpin RNA</td>
</tr>
<tr>
<td>siRNA</td>
<td>Short interfering RNA</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface Plasmon Resonace</td>
</tr>
<tr>
<td>STAT1</td>
<td>Signal Transducers and Activators of Transcription 1</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N', N'-tetramethyl-ethane-1, 2-diamine</td>
</tr>
<tr>
<td>TETOP</td>
<td>Tetracycline responsive operator</td>
</tr>
<tr>
<td>Tn</td>
<td>Transposon</td>
</tr>
<tr>
<td>Tris</td>
<td>[tris(hydroxymethyl) aminomethane]</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VEGF165</td>
<td>Vascular endothelial growth factor 165</td>
</tr>
<tr>
<td>Vol</td>
<td>Volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight/volume ratio</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-β-D-galactoside</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>μl</td>
<td>Micro liter</td>
</tr>
</tbody>
</table>