Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i-iii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>iv-v</td>
</tr>
<tr>
<td>Chapter I: Introduction and Review of Literature</td>
<td>1-52</td>
</tr>
<tr>
<td>I.1: Introduction</td>
<td>1-6</td>
</tr>
<tr>
<td>I.2: Review of Literature</td>
<td>7-52</td>
</tr>
<tr>
<td>I.2.1: Consumption of vegetables and fruits and cancer</td>
<td>12-15</td>
</tr>
<tr>
<td>I.2.2: Cancer chemoprevention</td>
<td>15-17</td>
</tr>
<tr>
<td>I.2.3: Novel plant-derived phytochemicals and cancer chemoprevention</td>
<td>17-21</td>
</tr>
<tr>
<td>I.2.4: Potential cancer chemopreventive targets</td>
<td>21-26</td>
</tr>
<tr>
<td>I.2.5: Beginning of chemoprevention</td>
<td>26-28</td>
</tr>
<tr>
<td>I.2.6: Why cancer chemoprevention with plant-derived compounds?</td>
<td>28-29</td>
</tr>
<tr>
<td>I.2.7: Prostate cancer (PCa) chemoprevention</td>
<td>29-32</td>
</tr>
<tr>
<td>I.2.8: Potential targets in PCa chemoprevention and novel PCa</td>
<td>32-52</td>
</tr>
<tr>
<td>chemopreventive agents</td>
<td></td>
</tr>
<tr>
<td>I.2.8.1: Cell signaling targets</td>
<td>33-40</td>
</tr>
<tr>
<td>I.2.8.2: Cell-cycle regulatory targets</td>
<td>40-43</td>
</tr>
<tr>
<td>I.2.8.3: Cell survival and apoptotic targets</td>
<td>43-45</td>
</tr>
<tr>
<td>I.2.8.4: New paradigms of cancer chemoprevention</td>
<td>45-46</td>
</tr>
<tr>
<td>I.2.8.5: Angiogenic and metastatic targets and angioprevention</td>
<td>46-52</td>
</tr>
<tr>
<td>Chapter II: Aims and Objectives</td>
<td>53-54</td>
</tr>
<tr>
<td>II.1: Aims</td>
<td>53</td>
</tr>
<tr>
<td>II.2: Objectives</td>
<td>54</td>
</tr>
<tr>
<td>Chapter III: Materials and Methods</td>
<td>55-85</td>
</tr>
<tr>
<td>III.1: Chemicals and reagents</td>
<td>55</td>
</tr>
<tr>
<td>III.2: Cell culture</td>
<td>55-57</td>
</tr>
</tbody>
</table>
III.3: Antibodies and Proteins 57
III.4: Phytochemicals and drug treatments 57-58
III.5: Cell growth and death assays 58-59
III.6: FACS analysis for cell cycle distribution 59-60
III.7: Apoptosis assay 60
III.8: Clonogenic assay 60-61
III.9: Cell adhesion assay 61-62
III.10: Wound closure assay 62-63
III.11: Cell migration assay 63-64
III.12: Cell invasion assay 64-65
III.13: HUVEC invasion/migration assay 65-66
III.14: In vitro angiogenesis assay 66-67
III.15: Chorioallantoic membrane (CAM) angiogenesis assay 67-68
III.16: Rat aortic ring angiogenesis assay 68-69
III.17: MMP gelatin zymography for MMP-2 and -9 activities 69-71
III.18: RNA isolation from mammalian cells 71-72
III.19: RNA estimation 73
III.20: RNA gel electrophoresis 73-75
III.21: Semiquantitative reverse transcriptase PCR (RT-PCR) 75-79
III.22: Whole cell lysate preparation 79-80
III.23: Immunoblot analysis 81-82
III.24: Co-immunoprecipitation (Co-IP) 82-84
III.25: Nuclear lysate preparation 84-85
III.26: Statistical analysis 85

Chapter IV: Results and Discussion (Part-I) 86-104

IV.1: Decursin and acacetin suppress various attributes of angiogenesis in HUVEC as well as tumor cells 86-90
IV.2: Decursin and acacetin inhibit HUVEC growth and proliferation 90-91
IV.3: Induction of G1 arrest by decursin in HUVEC 91
IV.4: Decursin and acacetin suppress HUVEC-capillary formation 91-92
IV.5: Decursin and acacetin suppress HUVEC-invasion/migration 93-94
IV.6: Decursin and acacetin strongly suppress *ex vivo* angiogenesis 94
IV.7: Acacetin inhibits the VEGF-STAT-VEGF axis in HUVEC 95
IV.8: Acacetin strongly suppresses angiogenesis *in vivo* 95-96
IV.9: Decursin and acacetin inhibit expression or activation of pro-angiogenic molecules in various cancer cells 96-97
IV.10: Discussion 98-104

Chapter V: Results and Discussion (Part-II) 105-135

V.1: Decursin and acacetin show strong anticancer activities against PCa 105-110
V.2: Decursin and acacetin suppress PCa cell growth and proliferation 110-111
V.3: Decursin and acacetin suppress clonogenic potential of PCa cells 111-112
V.4: Decursin induces cell cycle arrest in PCa cells 113-115
V.5: Acacetin alters activities of mitogenic/cell survival and cell cycle regulatory factors 116-117
V.6: Acacetin inhibits STAT signaling in PCa cells 117
V.7: Acacetin modulates the expression of Rb-related proteins and E2F transcription factors and their interaction 118
V.8: Decursin modulates EGFR pathway in PCa 119-120
V.9: Acacetin suppresses EGFR-pathway in PCa 120-122
V.10: Decursin and acacetin potently inhibit cell adhesion, migration and invasion potential of PCa cells 122-124
V.11: Decursin and acacetin suppresses the expression/activation of various angiogenesis-related factors in PCa cells 124-125
V.12: Discussion 126-135

Chapter VI: Summary and Conclusions 136-140

Chapter VII: References 141-163

Chapter VIII: Appendix 164-173
List of Tables

1. Table 1. All Cancers (excluding non-melanoma skin cancer) incidence and mortality worldwide in 2008, Summary.

2. Table 2A. Age-standardized cancer incidence rates- India, Males.

3. Table 2B. Age-standardized cancer incidence rates- India, Females.

5. Table 4. Clinically approved cancer chemotherapeutic agents derived from plants.

6. Table 5. Phytochemicals as cancer chemopreventive agents.

7. Table 6. Phytochemicals as antiangiogenic agents.
List of Figures

Figure 1. All Cancers (excluding non-melanoma skin cancer) estimated incidence and mortality rates- world [age-standardized rates (ASR) per 100,000].

Figure 2. Worldwide and developed vs. developing world cancer incidences and mortalities of major six cancers.

Figure 3. Estimated age-standardized incidence and mortality rates, and 5-year prevalence for both sexes-worldwide.

Figure 4. Estimated age-standardized incidence and mortality rates, and 5-year prevalence: men (4A), women (4B) and both sexes (4C)- India.

Figure 5. Prostate cancer estimated incidence and mortality rates- world [ASR per 100,000].

Figure 6. The basic steps of the carcinogenesis process and targets for its intervention.

Figure 7. Important PCa chemopreventive targets.

Figure 8. Importance of angiogenesis in carcinogenesis process and angiopreventive targeting in cancer.

Figure 9. Tumor-induced angiogenesis.

Figure 10. Chemopreventive targets of phytochemicals during metastatic process.

Figure 11: Chemical structures of (A): Decursin, a coumarin compound and (B): Acacetin, an isoflavone.

Figure 12: Effect of decursin treatment on cell proliferation and survival of HUVEC.

Figure 13: Effect of acacetin on HUVEC growth and proliferation.

Figure 14: Effect of decursin on HUVEC cell cycle progression.

Figure 15: Effect of decursin on the capillary tube formation by HUVEC.
Figure 16: Effect of acacetin on HUVEC capillary tube formation.

Figure 17: Effect of decursin on HUVEC invasion/migration and MMP activities.

Figure 18: Effect of acacetin on HUVEC migration and invasion.

Figure 19: Effect of decursin on Rat Aortic Ring angiogenesis and on the expression of various proangiogenic factors in tumor cells.

Figure 20: Effect of acacetin on rat aortic ring and CAM angiogenesis.

Figure 21: Acacetin inhibits activation and/or expression of angiogenic molecules in HUVEC.

Figure 22. Acacetin suppresses VEGF-induced *in vivo* angiogenesis and down-regulates various pro-angiogenic factors in cancer cells.

Figure 23: Acacetin suppresses expression of proangiogenic factors in tumor cells.

Figure 24. Effect of decursin on 22Rv1 and DU145 cell proliferation and death.

Figure 25. Effect of acacetin on 22Rv1, PC3 and DU145 cell proliferation and death.

Figure 26. Effect of decursin on the clonogenecity of PCa cells.

Figure 27. Effect of acacetin on the clonogenecity of PCa cells.

Figure 28: Effect of decursin on 22Rv1 and DU145 cell cycle progression.

Figure 29. Effect of decursin on the cell cycle regulatory and mitogenic/prosurvival proteins in 22RV1 cells.

Figure 30. Effect of decursin on the cell cycle regulatory proteins in DU145 cells.

Figure 31. Effect of decursin on the mitogenic and survival proteins in DU145 cells.

Figure 32. Effect of acacetin on the mitogenic and pro-survival proteins in 22Rv1 cells.
Figure 33. Effect of acacetin on the pro-survival and metastatic related proteins in PC3 cells.

Figure 34. Effect of acacetin on the pro-survival, mitogenic and angiogenic related proteins in DU145 cells.

Figure 35. Effect of acacetin on the cell cycle regulatory proteins in DU145 cells.

Figure 36. Effect of decursin on mitogenic and pro-survival EGFR-signaling in PCa.

Figure 37. Effect of acacetin on mitogenic and pro-survival EGFR-signaling in PCa.

Figure 38. Effect of acacetin on mitogenic and pro-survival EGFR-signaling in PCa.

Figure 39: Anti-metastatic effects of decursin on PCa.

Figure 40: Anti-metastatic potential of acacetin in 22RV1 cells.

Figure 41: Anti-metastatic potential of acacetin in DU145 cells.

Figure 42: Anti-metastatic potential of acacetin in PCa.

Figure 43: Decursin and acacetin suppresses expression of proangiogenic factors in tumor cells.