Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Chapter - 1: Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1. Nanomaterials and nanotechnology</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1. Bottom-up approach</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2. Top-down approach</td>
<td>4</td>
</tr>
<tr>
<td>1.2. Significance of Nanotechnology</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Nature and Nanotechnology</td>
<td>5</td>
</tr>
<tr>
<td>1.4. Nanotechnology and Biology</td>
<td>6</td>
</tr>
<tr>
<td>1.5. Nano-biotechnology</td>
<td>6</td>
</tr>
<tr>
<td>1.6. Overview of nanotechnology research activities in the agricultural sector</td>
<td>7</td>
</tr>
<tr>
<td>1.7. Metal nanoparticles</td>
<td>8</td>
</tr>
<tr>
<td>1.8. Properties of metal nanoparticles</td>
<td>9</td>
</tr>
<tr>
<td>1.8.1. Mechanical properties</td>
<td>9</td>
</tr>
<tr>
<td>1.8.2. Catalytic properties</td>
<td>9</td>
</tr>
<tr>
<td>1.8.3. Magnetic properties</td>
<td>9</td>
</tr>
<tr>
<td>1.8.4. Optical properties</td>
<td>10</td>
</tr>
<tr>
<td>1.9. Advantages of nanoparticles</td>
<td>10</td>
</tr>
<tr>
<td>1.10. Limitations of nanoparticles</td>
<td>11</td>
</tr>
<tr>
<td>1.11. Nanotechnology applications</td>
<td>11</td>
</tr>
<tr>
<td>1.11.1. Nanotechnology in medical field</td>
<td>11</td>
</tr>
<tr>
<td>1.11.2. Nano-foods</td>
<td>13</td>
</tr>
<tr>
<td>1.11.3. Metal nanoparticles in determining antimicrobial activity</td>
<td>14</td>
</tr>
<tr>
<td>1.11.4. Engineered metal nanoparticles in agriculture</td>
<td>14</td>
</tr>
<tr>
<td>1.11.5. Few nanotechnology based products in the market</td>
<td>15</td>
</tr>
<tr>
<td>1.12. Synthesis of metal nanoparticles</td>
<td>15</td>
</tr>
<tr>
<td>1.13. Green synthesis of metal nanoparticles</td>
<td>15</td>
</tr>
<tr>
<td>1.14. Plants - the green route for biosynthesis of nanoparticles and factors affecting the bio-synthesis of nanoparticles</td>
<td>16</td>
</tr>
<tr>
<td>1.15. Plants as bioreactors: Synthesis of metal nanoparticles</td>
<td>17</td>
</tr>
<tr>
<td>1.16. Role of biomolecules in binding and reduction of metal ions</td>
<td>17</td>
</tr>
<tr>
<td>1.17. Importance of Zinc</td>
<td>18</td>
</tr>
<tr>
<td>1.18. Overview of soil microorganisms and soil exo-enzyme activity</td>
<td>19</td>
</tr>
</tbody>
</table>
1.19. Review of literature
 1.19.1. Work reported on the green synthesis of metal nanoparticles
 1.19.1.1. Work reported on the green synthesis of silver nanoparticles 24
 1.19.1.2. Work reported on the green synthesis of gold nanoparticles 33
 1.19.1.3. Work reported on the green synthesis of metal oxide and metal sulphate nanoparticles 47
 1.19.2. Work reported on soil micro-biota and soil exo-enzyme activities 48
1.20. Scope of research work 51
1.21. Objective of research work 52
1.22. Organization of thesis 52
References 54 - 65

Chapter - 2: Materials and method

2.1. Introduction 66
2.2. Plant materials 67
 2.2.1. Parthenium hysterophorous 67
 2.2.2. Senna auriculata 69
 2.2.3. Thevetia peruviana 71
 2.2.4. Arachis hypogaeae 73
2.3. Green synthesis and characterization of zinc nanoparticles 75
 2.3.1. Study site and soil sampling 75
 2.3.2. Plant material (leaves) collection and preparation of leaves extract for green synthesis of zinc nanoparticles 75
2.4. Characterization of zinc nanoparticles 75
2.5. Apparatus used for the characterization of zinc nanoparticles 76
 2.5.1. Centrifuge (REMI K70). 76
 2.5.2. Ultra-Sonicator. 76
 2.5.3. Ultraviolet-Visible Spectrophotometer (Shimadzu UV-2450). 78
 2.5.4. Fourier transform infrared spectroscopy (FTIR, Bruker Tensor 27) 80
 2.5.5. Particle size analyzer (Horiba, Nanopartica SZ-100) 84
 2.5.6. X-ray diffractometer (Siefert X-ray diffractometer, model 3003) 86
 2.5.7. Scanning Electron Microscope (SEM, Carlziess EVO 50) 87
2.5.8. Energy dispersive X-ray analysis (EDAX, Oxford Systems) 90
2.5.9. Transmission electron microscope (HITACHI, H-7500) 91
2.5.10. Inductively Coupled Plasma-Optical Emission Spectrophotometer (ICP - OES - Perkin Elmer Optima 8000) 95
2.5.11. Calorimeter (Parr 1455 Solution Calorimeter) 96
2.6. Pot-culture of peanut 97
 2.6.1. Enumeration of micro-organisms (Soil micro-biota) 98
 2.6.2. Soil enzyme activity 98
 2.6.2.1. Assay of soil phosphatase activity 98
 2.6.2.2. Assay of dehydrogenase activity 100
 2.6.3. Physiological traits 102
 2.6.4. Estimation of soil respiration in closed jars (Isermeyer 1952) 102
 2.6.5. Estimation of chlorophyll content in leaves 103
References 104 - 106

Chapter - 3: Results and discussion 107

Chapter - 3.1: Parthenium hysterophorous
 3.1.1 Green synthesis of zinc nanoparticles 109
 3.1.2 Characterization of zinc nanoparticles 110
 3.1.2.1. Ultraviolet-visible Spectroscopic analysis 110
 3.1.2.2. Fourier transform infrared spectroscopic analysis 112
 3.1.2.3. X-ray Diffraction analysis 114
 3.1.2.4. Particle analyzer studies 115
 3.1.2.5. Scanning electron microscopic analysis (SEM) 116
 3.1.2.6. Energy dispersive X-ray spectroscopic analysis (EDAX) 118
 3.1.2.7. Transmission electron microscopic analysis 119
 3.1.3 Pot-culture experiment conducted on peanut 123
 3.1.3.1 Soil microbial population 123
 3.1.3.1.1. Colony count of bacteria 123
 3.1.3.1.2. Colony count of fungi 123
 3.1.3.1.3. Colony count of actinomycetes 124
 3.1.3.2 Soil exo-enzyme activity 130
 3.1.3.2.1. Acidic phosphatase activity 130
 3.1.3.2.2. Alkaline phosphatase activity 132
 3.1.3.2.3. Dehydrogenase activity 133
3.1.3.3. Estimation of physiological growth parameters of peanut plants 135
3.1.3.4. Soil respiration 143
3.1.3.5. Estimation of chlorophyll content 144

Chapter - 3.2: Senna auriculata
3.2.1. Green synthesis of zinc nanoparticles 146
3.2.2. Characterization of zinc nanoparticles 147
3.2.2.1. Ultraviolet-visible Spectral analysis 147
3.2.2.2. Fourier transform infrared spectral analysis 148
3.2.2.3. X-ray Diffraction analysis 149
3.2.2.4. Particle analyzer studies 150
3.2.2.5. Scanning electron microscopic analysis (SEM) 152
3.2.2.6. Energy dispersive X-ray spectral analysis (EDAX) 153
3.2.2.7. Transmission electron microscopic analysis (TEM) 154
3.2.3. Peanut pot-culture experiment 158
3.2.3.1. Soil microbial population 158
3.2.3.1.1. Colony count of bacteria 158
3.2.3.1.2. Colony count of fungi 158
3.2.3.1.3. Colony count of actinomycetes 159
3.2.3.2. Soil exo-enzyme activity 164
3.2.3.2.1. Acidic phosphatase activity 164
3.2.3.2.2. Alkaline phosphatase activity 165
3.2.3.2.3. Dehydrogenase activity 167
3.2.3.3. Estimation of physiological growth parameters 168
3.2.3.4. Estimation of chlorophyll content 174

Chapter - 3.3: Thevetia peruviana
3.3.1. Green synthesis of zinc nanoparticles 176
3.3.2. Characterization of zinc nanoparticles 177
3.3.2.1. Ultraviolet-visible Spectral analysis 177
3.3.2.2. Fourier transform infrared spectral analysis 179
3.3.2.3. X-ray Diffraction analysis 181
3.3.2.4. Particle analyzer studies 181
3.3.2.5. Scanning electron microscopic analysis (SEM) 183
3.3.2.6. Energy dispersive X-ray spectral analysis (EDAX) 184
3.3.2.7. Transmission electron microscopic analysis (TEM)

3.3.3. Influence of nanozinc on the peanut pot-culture

3.3.3.1 Soil microbial population

3.3.3.1.1 Colony count of bacteria

3.3.3.1.2 Colony count of fungi

3.3.3.1.3. Colony count of actinomycetes

3.3.3.2 Soil exo-enzyme activity

3.3.3.2.1. Acidic phosphatase activity

3.3.3.2.2. Alkaline phosphatase activity

3.3.3.2.3. Dehydrogenase activity

3.3.3.3. Estimation of physiological growth parameters

3.3.3.4. Estimation of chlorophyll content

Chapter - 3.4: A comparative study: Discussion on results obtained

3.4.1. Mechanism involved in zinc nanoparticle synthesis

3.4.2. Characterization of zinc nanoparticles

3.4.3. Pot-culture experiment conducted on peanut

References

Chapter - 4: Summary and conclusions

4.1. Summary

4.2. Conclusions

4.3. Scope for the future work

Chapter - 5: Highlights of the research work