TABLE OF CONTENTS

Acknowledgments ... i
Preface .. v
Table of Contents ... viii
List of Figures .. xiii
List of Tables .. xx
List of Abbreviations .. xxi
List of Symbols .. xxiv

Contents

Chapter 1: Introduction

1.1. Pollutants and Their Sources 2
1.2. Effects of Pollutants .. 2
1.2.1. Health Effect of Pollutants 2
1.2.2. Economical Effects of Pollutants 4
1.2.3. Role of Pollutants in Atmospheric Chemistry 5
1.2.4. Climate Effects of Pollutants 6
1.3. Observations and Modelling of Pollutants 8
1.4. Importance of Observations and Modelling of Pollutants in a Rural Environment 9
1.5. Past Studies Over Rural Regions in India 10
1.6. Scope of the Thesis .. 11
1.7. Structure of the Thesis 11
TABLE OF CONTENTS

Chapter 2: Experimental Site and Instrumentation

- 2.1. Introduction .. 15
- 2.2. Experimental Site .. 15
- 2.3. Black Carbon Measurements 16
 - 2.3.1. Flow Meter Calibration .. 19
- 2.4. Trace-gases Measurements ... 20
 - 2.4.1. Ozone Analyser .. 21
 - 2.4.1.a Working Principle ... 21
 - 2.4.1.b Zero Calibration ... 22
 - 2.4.1.c Span Calibration ... 23
 - 2.4.2. NO\textsubscript{X} Analyser 23
 - 2.4.2.a Zero Calibration ... 25
 - 2.4.2.b Span Calibration ... 26
 - 2.4.3. SO\textsubscript{2} Analyser 28
 - 2.4.3.a Zero Calibration ... 29
 - 2.4.3.b Span Calibration ... 29
- 2.5. Pyranometer ... 31
- 2.6. Automatic Weather Station 32
 - 2.6.1. Meteorology of the Site 35

Chapter 3: Investigation of Long Range Transport of Black Carbon using Lagrangian Particle Dispersion Model FLEXPART

- 3.1. Introduction .. 39
- 3.2. Equipments and Data used in this Study 40
- 3.3. MODerate resolution Imaging SpectroRadiometer (MODIS) 40
- 3.4. Model Description ... 41
- 3.5. Emission Inventories ... 43
- 3.6. Observations .. 48
- 3.7. Potential Emission Sensitivity 50
Table of Contents

3.8. Wet Scavenging Effect in FLEXPART

3.9. Modelled BC Concentrations

3.9.1. Case Studies

3.10. Conclusions

Chapter 4: Diurnal and Seasonal Variations of Ozone and NO\textsubscript{X}

4.1. Introduction

4.2. Equipments and Data used in this Study

4.2.1. Ozone Mixing-Ratio Simulations

4.3. Results and Discussions

4.3.1. Observations of Ozone

4.3.2. Monthly Variability

4.3.3. Comparison of Ozone Levels with Other Places

4.3.4. Rate of Change of Ozone

4.3.5. Observations of NO\textsubscript{X}

4.3.6. Diurnal Variability of NO\textsubscript{X}

4.3.7. Seasonal Variability of NO\textsubscript{X}

4.3.8. Numerical Simulation of Ozone at Gadanki

4.3.8.1. Role of VOCs in ozone production

4.3.8.2. Role of Aerosols in Ozone Production

4.3.8.3. Role of Total Column Ozone in Ozone Production

4.3.8.4. Role of Cloudiness in Ozone Production

4.3.9. Numerical Simulation of Ozone at Gadanki

4.4. Conclusions

Chapter 5: Decadal Changes in Ozone and NO\textsubscript{x}

5.1. Introduction

5.2. Equipment and Data used in this Study
TABLE OF CONTENTS

5.2.1. Global Ozone Monitoring Experiment (GOME) 104
 5.2.1.1. Differential Optical Absorption Spectroscopy 104
5.2.2. Ozone Monitoring Instrument 106
 5.2.2.1. Tropospheric NO$_2$ Column 107
5.3. Comparison of Past and Present Observations 108
 5.3.1. Comparison of Ozone 108
 5.3.2. Comparison of NO$_X$ 106
 5.3.3. Tropospheric NO$_2$ Trends 114
 5.3.3.1. Trend Calculation 115
5.4. Numerical Simulation of Ozone Differences 119
5.5. Conclusions 123

Chapter 6: Effect of Biomass Burning on Ozone

6.1. Introduction 125
6.2. Equipment and Data used in this study 125
 6.2.1. Atmospheric Infra-Red Sounder (AIRS) 126
 6.2.2. Model for Ozone And Related Tracers (MOZART) model 127
6.3. Results and Discussions 127
 6.3.1. Identification of Biomass Burning Season for Gadanki 127
 6.3.2. Seasonal Variability of Ozone 130
 6.3.3. Correlations of Ozone With Radiation 132
 6.3.4. Correlations of Ozone With BC 133
 6.3.4.1. Correlation During Biomass Burning and non Biomass Burning Seasons 133
 6.3.5. Seasonal Differences of Ozone Mixing Ratios 137
6.4. Conclusions 140
TABLE OF CONTENTS

Chapter 7: Modelling of High SO₂ Episodes Using FLEXPART

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Introduction</td>
<td>142</td>
</tr>
<tr>
<td>7.2. Equipments and Data used in this Study</td>
<td>143</td>
</tr>
<tr>
<td>7.2.1. Ozone Monitoring Instrument (OMI)</td>
<td>143</td>
</tr>
<tr>
<td>7.2.2. FLEXPART Model Setup</td>
<td>143</td>
</tr>
<tr>
<td>7.2.3. Emission Inventory</td>
<td>144</td>
</tr>
<tr>
<td>7.3. Results and Discussions</td>
<td>146</td>
</tr>
<tr>
<td>7.3.1. SO₂ Concentration</td>
<td>146</td>
</tr>
<tr>
<td>7.3.2. Model Results</td>
<td>149</td>
</tr>
<tr>
<td>7.3.3. Study of High and Low SO₂ Periods and Source Apportionment Using Model Simulations</td>
<td>153</td>
</tr>
<tr>
<td>7.3.4. Source Apportionment Using SO₂ and NO₂ Ratio</td>
<td>154</td>
</tr>
<tr>
<td>7.3.5. Model Simulated SO₂ Concentration</td>
<td>155</td>
</tr>
<tr>
<td>7.3.6. Case Study of Extreme Event</td>
<td>156</td>
</tr>
<tr>
<td>7.4. Conclusions</td>
<td>161</td>
</tr>
</tbody>
</table>

Chapter 8: Conclusions and Future Scope of work

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. SUMMARY AND CONCLUSIONS</td>
<td>163</td>
</tr>
<tr>
<td>8.2. FUTURE SCOPE</td>
<td>166</td>
</tr>
</tbody>
</table>

References | 168 |

List of Publications | 188 |
List of Figures

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name</th>
<th>Page. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Different mechanism involved in the production and destruction of ozone in troposphere.</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Impact of pollutants in the atmosphere.</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>(a) Location of Gadanki in India. (b) ICON Observatory located at NARL.</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Model AE31 Aethalometer being operated from ICON observatory.</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of Aethalometer.</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Trace-gas analysers located at ICON observatory.</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagram of ozone analyzer.</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic representation of NOx Analyser.</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Calibration certificate for zero air cylinder.</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Calibration certificate of NO\textsubscript{2} permeation tube.</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>NIST standard calibration certificate of NO\textsubscript{2} cylinder.</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic representation of SO\textsubscript{2} analyser.</td>
<td>28</td>
</tr>
<tr>
<td>2.11</td>
<td>Calibration certificate of SO\textsubscript{2} Permeation tube.</td>
<td>29</td>
</tr>
<tr>
<td>2.12</td>
<td>NIST standard calibration certificate of SO\textsubscript{2} cylinder.</td>
<td>30</td>
</tr>
<tr>
<td>2.13</td>
<td>Pyranometers and pyrheliometer installed on top of the ICON observatory.</td>
<td>31</td>
</tr>
<tr>
<td>2.14</td>
<td>Old and New Calibration constants of the pyranometers and pyrheliometer.</td>
<td>32</td>
</tr>
</tbody>
</table>
FIGURES

2.15. Automatic Weather Station (AWS) located at NARL. 34
2.16. Monthly mean temperature, relative humidity, wind speed, wind
direction and monthly total rainfall over Gadanki for 2010-2011. 35
2.17. Windrose diagram of the observed winds during 2010-11. 37
3.1. Image of MODIS sensor on board of Terra EOS. 40
3.2. ECLIPSE (ECLIPSE v5 + GFED v3) black carbon emission
inventory over South Asia. 44
3.3. Difference between the ECLIPSE and RETRO emissions
(ECLIPSE –RETRO). 45
3.4. Difference between ECLIPSE and SAFAR India emissions
(ECLIPSE –SAFAR). 46
3.5. Daily mean black carbon concentration observed at Gadanki
(black dots) and their ±1σ standard deviation (orange vertical
bars. 48
3.6. Monthly median Fire Radiative Power values obtained from
MODIS satellite for whole India and peninsular India (south of
18° N latitude). 49
3.7. (a-d): Selected examples of footprint potential emission
sensitivity (PES) maps (also known as source-receptor
relationships) using ten days of backward runs (retroplumes) of
FLEXPART from Gadanki. 50
3.8. PES maps of 14 Oct 2011 local time (a) with and (b) without
wet-deposition respectively. 53
3.9. Accumulated rainfall measured by TRMM from 14th to 10th
October 2011. 54
3.10 Black carbon source contribution maps based on FLEXPART
retro plume calculations and the ECLIPSE inventory. Values
are for seasonal averages i.e. (a) winter, (b) spring, (c) summer,
(d) autumn, and (e) annual average for year 2009.

3.11. Comparison of observed and model predicted BC mass. (a) 2009 without wet deposition (b) 2011 without wet deposition (c) 2011 with wet deposition.

3.13. Fraction of simulated BC mass at Gadanki with particles of different age for year (a) 2009 and (b) 2011. Age 0-1 days represents contribution from day1 for the backward simulation. Age 2-3 days represents day2 and day3 contribution, Age 4-6 days represents day4 to day6 and Age 7-10 represents day 7 to day 10. Note that 2009 simulations are without wet-deposition whereas 2011 simulations are with wet-deposition.

3.14. Black carbon source contribution maps with fire hotspots overlaid. Values are for seasonal averages i.e. (a) winter, (b) spring, (c) summer, (d) autumn, and (e) annual average for year 2009.

3.15. Same as Figure 3.11a but zoomed-in for period (a) January to April (b) May to August and (c) September to December.

3.16. PES map of black carbon for the day 08-01-2009.

3.17. PES map of black carbon for the day 13-01-2009.

3.18. PES maps of black carbon (a) for 16-01-2009 (b) 21-01-2009.

3.20. PES maps for (a) 5-09-2009 (b) 17-09-2009 (c) 16-10-2009 (d) 31-10-2009.

4.1. Example of input.solar file used in TUV model.

4.2. Frequency Distribution of 8 hour averaged ozone mixing ratios for the period 2010-2011.
4.3. Diurnal variation of ozone on 25th March 2011 over Gadanki. 82
4.4. Diurnal variation of ozone for different seasons. 83
4.5. Monthly mean variation of ozone over Gadanki from January 2010 to December 2011. Filled circles are monthly mean ozone concentration whereas vertical bars are 1σ standard deviation. 84
4.6. Monthly averaged daily solar irradiance over Gadanki during 2010-11. Right hand Y-axis shows the ratio of solar irradiance with respect to its April value. 85
4.7. Comparison of monthly mean ozone concentration during 2010–11 over Gadanki with other places in India. 86
4.8. Rate of change of ozone for different seasons for the period 2010-11. 87
4.9. Frequency Distribution of 8 hour averaged ozone mixing ratios for the period 2010-2011. 89
4.10. Diurnal variation of NOX over Gadanki for 2010-2011. The filled circles are median values and vertical bars represent inter-quartile range. 90
4.11. Monthly median mixing-ratios of NOX at Gadanki for 2010-2011. Vertical bars are inter-quartile range. 90
4.12. Observed and simulated diurnal variation of ozone for the month January averaged over 2010 and 2011 for different isoprene values. 93
4.13. Simulated ozone concentration for different AOD values. See Table 4.2 Run M-03 for details on other parameters. 96
4.14. Simulated ozone concentration for different SSA values. See Table 4.2 Run M-03 for details on other parameters. 96
4.15. Simulated ozone concentration for different Angstrom exponent values. See Table 4.2, Run M-01 for details on other parameters. 97
4.16. Simulated ozone concentration for different columnar ozone
values. See Table 4.2 Run M-01 for details on other parameters.

4.17. Simulated ozone with 0% cloud and 20% cloud.

4.18. Monthly variation of peak ozone as simulated and multiyear observations.

4.19. Comparison of monthly mean noon-time peak ozone mixing ratios between box-model (NCAR-MM) and observations for year 2010-11.

5.1. Diagram of OMI NADIR measurements.

5.3. Comparison of seasonal, diurnal patterns of surface ozone over Gadanki for the past and present observations.

5.4. (a) Day-time and (b) night-time ozone mixing ratios during 1993-96 vs. 2010-11.

5.5. Comparison of rate of change of ozone between past and present observations.

5.6. Comparison of monthly median of NO\textsubscript{X} mixing ratios during 1994-95 with that observed during 2010-11. Vertical bars represent inter-quartile range.

5.7. (a) Trends in tropospheric NO\textsubscript{2} over South India calculated for the period between 1996 to 2011 after combining GOME and OMI data. Grid-boxes with black dots shows statistically significant trend at confidence level 95 % or more. Trends are calculated using method described in (Hilboll et al. 2013) and (Mieruch et al. 2008) (b) Monthly mean tropospheric column NO\textsubscript{2} concentration observed over Gadanki using GOME (1996-2003) and OMI (2005-2011).

5.8. Comparison of monthly mean noon-time peak ozone mixing ratios between box-model (NCAR-MM) and observations for
the year (a) 2010-11 and (b) 1993-96. For all the model runs NO$_2$ concentration is constrained to monthly mean observations. Model run M-01 and M-04 are without any VOCs. M-02 and M-05 are with Isoprene values based on (Karl et al., 2007). M-03 and M-06 are with Isoprene values equal to 1/10 of the values used in M-02 and M-05. (c) Difference between past and present noon-time peak ozone mixing ratios for observations and models.

6.1. AIRS machine structure.

6.2. Time-series of MODIS fire radiative power from 2000-2013 over India and Peninsular India (south of 18° N).

6.3. Multi-year (2010-2013) monthly average total column CO concentration over Gadanki and fire radiative over Peninsular India.

6.4. Monthly mean of black carbon concentration observed at Gadanki for the period 2010 to 2013.

6.5. Monthly mean of ozone (a) Observed and (b) MOZART-4 model simulated for years 2010 to 2013.

6.6. Monthly mean of MOZART model simulated and observed NO$_X$ mixing ratios for the period 2010-2011.

6.7. Ozone vs Radiation. Radiation values are binned with at each step value 50 W/m2 centered at middle value of the bin.

6.8. Correlation plots of ozone vs BC for the period (a) Feb-May and (b) July-September (c) November-January.

6.9. Ozone vs columnar delta CO. The delta CO is calculated as columnar CO minus minimum of columnar CO record from 2010 to 2013.

6.10. Correlations between observed and MOZART simulated ozone mixing ratio. (a) for the period January 2010 to December 2013, (b) February to May, (c) November to January.
7.1. Total emissions of SO$_2$ from ECLIPSE - V5 emission inventory for south Asia.

7.2. Frequency distribution of SO$_2$ concentration over Gadanki for 2010-11.

7.3. Daily mean of surface SO$_2$ (red diamonds) and OMI PBL SO$_2$ at Gadanki grid (13-14 °N and 79-78 °E).

7.4. (a-f): PES maps of SO$_2$ for five different days that represents different air masses originating from various regions that contribute to Gadanki observations.

7.5. Sum of PES for the period Jan 2011 - May 2011 simulated using FLEXPART model. Blue dots are the locations of power plants with 50 MW and more power generation capacity.

7.6. Sum of PES for the period June 2011-December 2011 (simulated using FLEXPART model. Blue dots are the locations of power plants with 50 MW or more power generation capacity.

7.7. Ratio of SO$_2$ to NO$_2$ for each day for the period January 2010-April 2012.

7.8. Comparison of observed and model simulated SO$_2$ values for the year 2011.

7.9. Total Column sensitivity maps calculated from FLEXPART for the days of high SO$_2$ event.

7.10. (a-f) PBL SO$_2$ from OMI satellite sensor from the day of mount Nabro eruption to the day it reaches observational site.
List of Tables

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name</th>
<th>Page. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Specific attenuation values for BC.</td>
<td>19</td>
</tr>
<tr>
<td>2.2.</td>
<td>Specifications of the trace-gas analysers.</td>
<td>20</td>
</tr>
<tr>
<td>2.3.</td>
<td>Span calibration values fixed and tested for ozone analyser by the manufacturer.</td>
<td>23</td>
</tr>
<tr>
<td>2.4.</td>
<td>Monthly accumulated rainfall (mm) for the observational period 2008 to 2013.</td>
<td>36</td>
</tr>
<tr>
<td>3.1.</td>
<td>FLEXPART model set-up for retroplume runs from Gadanki</td>
<td>42</td>
</tr>
<tr>
<td>3.2.</td>
<td>Average, ratio, bias, RMSD and correlation coefficient between modelled and observed BC concentrations when using different inventories for the years 2009 and 2011.</td>
<td>60</td>
</tr>
<tr>
<td>4.1.</td>
<td>Monthly mean, standard deviation and amplitude (maximum – minimum) of diurnal variation of ozone, and monthly median, 25th and 75th quartile values of NOX mixing ratios observed at Gadanki for the period 2010-2011.</td>
<td>91</td>
</tr>
<tr>
<td>4.2.</td>
<td>Inputs for numerical simulations of ozone concentration over Gadanki.</td>
<td>94</td>
</tr>
<tr>
<td>5.1.</td>
<td>Inputs for numerical simulations of ozone concentration over Gadanki.</td>
<td>120</td>
</tr>
<tr>
<td>6.1.</td>
<td>Partial correlations between BC, ozone and radiation</td>
<td>136</td>
</tr>
<tr>
<td>7.1.</td>
<td>FLEXPART model set-up for retro plume runs of SO2 from Gadanki.</td>
<td>144</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0D</td>
<td>Zero Dimension</td>
</tr>
<tr>
<td>AOD</td>
<td>Aerosol Optical Depth</td>
</tr>
<tr>
<td>AIRS</td>
<td>Atmospheric Infra Red Sounder</td>
</tr>
<tr>
<td>AR5</td>
<td>Assessment Report 5</td>
</tr>
<tr>
<td>ATN</td>
<td>Attenuation</td>
</tr>
<tr>
<td>AWS</td>
<td>Automatic Weather Station</td>
</tr>
<tr>
<td>BC</td>
<td>Black Carbon</td>
</tr>
<tr>
<td>BLH</td>
<td>Boundary Layer Height</td>
</tr>
<tr>
<td>BoB</td>
<td>Bay of Bengal</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge Coupled Device</td>
</tr>
<tr>
<td>CCN</td>
<td>Cloud Condensation Nucleus</td>
</tr>
<tr>
<td>CIMS</td>
<td>Chemical Ionization Mass Spectrometry</td>
</tr>
<tr>
<td>CPCB</td>
<td>Central Pollution Control Board</td>
</tr>
<tr>
<td>DOAS</td>
<td>Differential Optical Absorption Spectroscopy</td>
</tr>
<tr>
<td>DOMINO</td>
<td>Dutch OMI NO2</td>
</tr>
<tr>
<td>ECLIPSE</td>
<td>Evaluating the CLimate and air quality ImPacts of Short-livEd pollutants</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium range Weather Forecast</td>
</tr>
<tr>
<td>EOS</td>
<td>Earth Orbit System</td>
</tr>
<tr>
<td>ERS-2</td>
<td>European Remote Sensing satellite – 2</td>
</tr>
<tr>
<td>FIRMS</td>
<td>Fire Information for Resource Management System</td>
</tr>
<tr>
<td>FLEXPART</td>
<td>FLEXible PARTicle dispersion model</td>
</tr>
<tr>
<td>FRP</td>
<td>Fire Radiative Power</td>
</tr>
<tr>
<td>GAINS</td>
<td>Greenhouse gas – Air pollution Interactions and Synergies Model</td>
</tr>
<tr>
<td>GBD</td>
<td>Global burden of disease</td>
</tr>
<tr>
<td>GFEDv3</td>
<td>Global Fire Emissions Database version-3</td>
</tr>
<tr>
<td>GOME</td>
<td>Global Ozone Monitoring Experiment</td>
</tr>
<tr>
<td>HS</td>
<td>High Sensitivity</td>
</tr>
<tr>
<td>ICON</td>
<td>Indian Climate Observatory Network</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IGB</td>
<td>Indo Gangetic Basin</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel for Climate Change</td>
</tr>
<tr>
<td>ISRO-GBP</td>
<td>Indian Space Research Organisation – Geosphere Biosphere Program</td>
</tr>
<tr>
<td>KNMI</td>
<td>Koninklijke Nederlandse Meteorologisch Instituut (Royal Netherlands Meteorological Institute)</td>
</tr>
<tr>
<td>LANCE</td>
<td>Land Atmosphere Near Real – time Capability for EOS</td>
</tr>
<tr>
<td>LPDM</td>
<td>Lagrangian particle dispersion model</td>
</tr>
<tr>
<td>LPM</td>
<td>Litre Per Minute</td>
</tr>
<tr>
<td>LT</td>
<td>Local Time</td>
</tr>
<tr>
<td>m. a. g. l</td>
<td>mean atmospheric ground level</td>
</tr>
<tr>
<td>MODIS</td>
<td>MODerate resolution Imaging SpectroRadiometer</td>
</tr>
<tr>
<td>MOPITT</td>
<td>Measurements Of the Pollution in the Troposphere</td>
</tr>
<tr>
<td>MOZART</td>
<td>Model for Ozone And Related Tracers</td>
</tr>
<tr>
<td>MW</td>
<td>Micro Wavelength</td>
</tr>
<tr>
<td>NARL</td>
<td>National Atmospheric Research Laboratory</td>
</tr>
<tr>
<td>NCAR-MM</td>
<td>National Centre for Atmospheric Research – Master Mechanism</td>
</tr>
<tr>
<td>NCEP-GFS FNL</td>
<td>NCEP Global Forecast Systems Final</td>
</tr>
<tr>
<td>OMI</td>
<td>Ozone Monitoring Instrument</td>
</tr>
<tr>
<td>PAN</td>
<td>Peroxy Acetyl Nitrite</td>
</tr>
<tr>
<td>PBL</td>
<td>Planetary Boundary Layer</td>
</tr>
<tr>
<td>PES</td>
<td>Potential Emission Sensitivity</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Particulate Matter of size less than 10 µm</td>
</tr>
<tr>
<td>PMT</td>
<td>Photo Multiplier Tube</td>
</tr>
<tr>
<td>RETRO</td>
<td>REanalysis of the TROpospheric</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root Mean Square Deviation</td>
</tr>
<tr>
<td>RTD</td>
<td>Resistance Temperature Dependence</td>
</tr>
<tr>
<td>SAFAR</td>
<td>System of Air quality Forecasting and Research</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SCIAMACHY</td>
<td>Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY</td>
</tr>
<tr>
<td>SD</td>
<td>Solar Diffuser</td>
</tr>
<tr>
<td>SDSM</td>
<td>Solar Diffuser Stability Monitor</td>
</tr>
<tr>
<td>SLPM</td>
<td>Standard Litre Per Minute</td>
</tr>
<tr>
<td>SPM</td>
<td>Respirable Suspended Particulate Matter</td>
</tr>
<tr>
<td>SRCA</td>
<td>Spectro Radiometric Calibration Assembly</td>
</tr>
<tr>
<td>SSA</td>
<td>Single Scattering Albedo</td>
</tr>
<tr>
<td>TRMM</td>
<td>Tropical Rainfall Measurement Machine</td>
</tr>
<tr>
<td>TUV</td>
<td>Tropospheric Ultraviolet-Visible</td>
</tr>
<tr>
<td>UCAR</td>
<td>University Corporation for Atmospheric Research</td>
</tr>
<tr>
<td>USD</td>
<td>US Dollar</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VOC's</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulphur dioxide</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Oxides of nitrogen</td>
</tr>
<tr>
<td>NO</td>
<td>Nitrogen Oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>µm</td>
<td>micro meter</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>HONO</td>
<td>Nitrous acid</td>
</tr>
<tr>
<td>km</td>
<td>kilometer</td>
</tr>
<tr>
<td>I₀ and I</td>
<td>Intensities initial and after absorption</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>A</td>
<td>area</td>
</tr>
<tr>
<td>V</td>
<td>volume</td>
</tr>
<tr>
<td>nm</td>
<td>nano meter</td>
</tr>
<tr>
<td>ppbv</td>
<td>parts per billion volume</td>
</tr>
<tr>
<td>h</td>
<td>Plank's constant (6.62606957 × 10⁻³⁴ m² kg / s)</td>
</tr>
<tr>
<td>V</td>
<td>frequency</td>
</tr>
<tr>
<td>Tg/yr</td>
<td>Tera gram per year</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>dₚ</td>
<td>Diameter of aerosol</td>
</tr>
<tr>
<td>dsig</td>
<td>standard deviation in diameter</td>
</tr>
<tr>
<td>λ</td>
<td>wet scavenging coefficient</td>
</tr>
<tr>
<td>R</td>
<td>Correlation Coefficient</td>
</tr>
<tr>
<td>DU</td>
<td>Dobson Unit</td>
</tr>
<tr>
<td>α</td>
<td>Angstrom Exponent</td>
</tr>
</tbody>
</table>