SYNTHESIS AND CHARACTERIZATION OF MULTI-WALLED CARBON NANOTUBE-NANOFUIDS

a thesis submitted by

M. PREMALATHA (RR11PH004)

in partial fulfillment for the award of the degree of

DOCTOR OF PHILOSOPHY

under the supervision of

Dr. A. KINGSOM SOLOMON JEEVARAJ

DEPARTMENT OF PHYSICS
SCHOOL OF SCIENCE & HUMANITIES
KARUNYA UNIVERSITY
(Karunya Institute of Technology and Sciences)
(Declared as Deemed-to-be-University under Sec-3 of the UGC Act, 1956)
Karunya Nagar, Coimbatore - 641 114. INDIA

OCTOBER 2015
DECLARATION

I, M. PREMALATHA hereby declare that the thesis, entitled “Synthesis and Characterization of Multi-Walled Carbon Nanotube-Nanofluids”, submitted to the Karunya University, in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Physics is a record of original and independent research work done by me during the period 2012–2015, under the Supervision and guidance of Dr. A. Kingson Solomon Jeevaraj, Assistant Professor, Department of Physics, Arignar Anna Govt. Arts College, Namakkal. The work contained in this thesis has not been previously submitted to meet the requirements for a degree or diploma at this or any other higher education institution.

M. PREMALATHA
BONAFIDE CERTIFICATE

Certified that this Thesis titled “Synthesis and Characterization of Multi-Walled Carbon Nanotube-Nanofluids” is the bonafide work of M. PREMALATHA who carried out the research under my supervision. Certified further, that to the best of my knowledge the work reported herein does not form part of any other thesis or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other scholar.

Dr. A. Kingson Solomon Jeevaraj
SUPERVISOR
Assistant Professor,
Department of Physics,
Arignar Anna Govt. Arts College,
Namakkal.

Dr. S. Rajesh
Professor & Head,
Department of Physics,
Karunya University,
Coimbatore.

Countersigned by

Dr. J. Daphy Louis Lovenia
Director
School of Science and Humanities,
Karunya University.
ABSTRACT

In many industrial applications, fluids are generally used as a cooling medium and the enhancement of heat transfer behavior of these fluids is of great importance in many potential sectors. Thermal fluids, such as water or industrial oil, are fluids that transport heat between different units of an industrial plant. Thermal properties of fluids play a decisive role in heating as well as cooling applications in industrial processes. Thermal conductivity of a liquid is an important physical property that decides its heat transfer performance. A new dimensional thermo fluid term is known as nanofluid has emerged after the pioneering work by Choi (1995). Conventional heat transfer fluids have inherently poor thermal conductivity which makes them inadequate for ultra high cooling applications. To increase the thermal conductivity of thermal fluids, particulate solids like metal and metal oxides with 1-3 order of magnitude larger thermal conductivity than base fluids may be utilized.

In this work, novel nanofluid systems were prepared using pure MWCNTs, -OH and -COOH functionalized MWCNTs as dispersants with silicone oil and Dowtherm A as base fluids. For the preparation of MWCNTs nanofluids, two-step method combined with ultrasonication technique has been used. Using ultrasonic and dielectric studies, molecular interactions between MWCNTs-
MWCNTs or MWCNTs-base fluids have been determined. To understand the thermal characteristics of nanofluids, heat transfer studies, like viscosity and thermal conductivity studies have also been studied.

This thesis comprises of six chapters. Chapter 1 gives a brief introduction to nanofluids, review of earlier research works done on the ultrasonic studies, dielectric studies, viscosity studies, thermal conductivity studies of MWCNTs nanofluids and their heat transfer applications, and also detailed objective of the research work. Chapter 2 demonstrates the characterization techniques used for MWCNTs and the characterization results of commercially purchased MWCNTs. X-ray diffraction (XRD) pattern illustrates well-defined peaks of pure MWCNTs, OH functionalized MWCNT and COOH functionalized MWCNTs and the diffraction peaks values corresponds to the hexagonal graphite structure and confirmed with the journal reference values. Surface morphologies of pure MWCNTs, -OH functionalized MWCNT and -COOH functionalized MWCNTs were analyzed using Transmission electron microscopy (TEM). From transmission electron microscopic (TEM) analysis, it is observed that the MWCNTs exhibit cylindrical (or rod) like structure and the average nanotube diameters of pure MWCNTs, -OH functionalized MWCNT and -COOH functionalized MWCNTs are found to be in nanometer and lengths in micrometer. The elemental compositions of the MWCNTs are analyzed using an energy dispersive X-ray (EDAX) analysis spectroscopy. From the FT-IR spectra of MWCNTs, type of functional groups (-OH and -
COOH) attached on the surface of the MWCNTs have been identified. From the FT-Raman spectra of MWCNTs, a well graphitized structure was confirmed from the G-band peak. Both weight changes (thermogravimetry) and heat flow (Differential Scanning Calorimetry) in MWCNTs as a function of temperature or time in a controlled atmosphere were obtained from the simultaneous TGA-DSC measurements. From the TGA/DSC measurements, the quantitative determination of the -OH and -COOH groups at the surface of MWCNTs were identified. Chapter 3 describes the preparation of MWCNT nanofluids. MWCNTs nanofluids of different nanotubes concentrations were prepared by two-step method. In this method, commercially purchased nanotubes were dispersed in base fluids (Silicone oil and Dowtherm-A) with the help of ultrasonication technique. To avoid the agglomeration of nanotubes and to produce well-dispersed stable suspension ultrasonication method was used. Totally thirty two MWCNTs nanofluid systems with different nanotube concentrations (0.001 g, 0.002 g, 0.003 g, 0.004 g and 0.005 g) in two different base fluids (Silicone oil and Dowtherm-A) were prepared for the analysis. Chapter 4 describes the experimental techniques for MWCNTs nanofluids characterization and the experimental results of MWCNTs nanofluids using ultrasonic, refractive index and dielectric studies. Ultrasonic and dielectric studies were carried out to determine the type of molecular interactions (nanotube-nanotube and nanotube-fluid) present in the MWCNTs nanofluids. Refractive index values of the MWCNTs nanofluids samples were
measured to study the optical properties of MWCNTs nanofluids. Chapter 5 describes the heat transfer analysis of MWCNTs nanofluids using viscosity and thermal conductivity studies. Viscosity and thermal conductivity of MWCNTs nanofluids were studied with respect to MWCNTs concentrations at different temperatures. The interaction among nanotubes increases due to denser solid surface and the fluid flow resistance also increases, that leads to increase in viscosity values. From the thermal conductivity measurements of MWCNTs nanofluids, it is observed that the dispersion of higher concentrations of MWCNTs in base fluids leads to enhanced thermal conductivity value which is due to greater percolation of heat through the carbon nanotubes to form tri-dimensional network because of the high aspect ratio of the nanotubes. Precisely, the increased quantity of nanotubes forms closely packed thermal interfaces, which in turn, bestowed to acquire improved thermal conductivity in the MWCNTs nanofluids. Among all the six MWCNTs nanofluids prepared, Dowtherm A based MWCNTs nanofluids exhibit higher thermal conductivity when compared with silicone oil based MWCNTs nanofluids. Chapter 6 summarizes the experimental findings, concluding remarks and future perspectives. It is concluded that Dowtherm A based -OH functionalized MWCNTs nanofluids has most favorable thermal performance and has the potential for using it as a heat transfer fluid.
ACKNOWLEDGEMENT

I would like to thank god the almighty for giving me strength and wisdom during this research project. I would like to express my gratitude to the Chancellor Dr. Paul Dhinakaran, Vice Chancellor and the Registrar for providing necessary infrastructure and resources to do my research work. I am grateful to the Director (S&H) and Head of the Department (Physics) for their kind advises and helpful suggestions. I am extremely thankful to the Department of Science and Technology (DST), India for their financial support during my research period.

I am really grateful to my guide Dr. A. Kingson Solomon Jeevaraj for his constant guidance, valuable suggestions and supervision, which have made the completion of this work possible well within stipulated time frame. I owe my deepest appreciation to my doctoral committee members Dr. K. Sankaranarayanan, and Dr. S. Rajesh for their ideas, valuable suggestions and comments. I am thankful to the Lab Assistants, my fellow researchers and the faculty members for their help and support during my research period. Most importantly, I would like to thank my parents, in-laws and my sister for their love and support throughout the research period. I especially thank my husband for his constant support, understanding, love and care.

M. PREMALATHA
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>BONAFIDE CERTIFICATE</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 NANOPARTICLES</td>
<td>1</td>
</tr>
<tr>
<td>1.2 BASE FLUIDS</td>
<td>2</td>
</tr>
<tr>
<td>1.3 NANOFIUIDS</td>
<td>2</td>
</tr>
<tr>
<td>1.4 ADVANTAGES OF NANOFIUIDS</td>
<td>3</td>
</tr>
<tr>
<td>1.5 PREPARATION METHODS FOR NANOFIUIDS</td>
<td>3</td>
</tr>
<tr>
<td>1.6 HEAT TRANSFER APPLICATIONS OF NANOFIUIDS</td>
<td>4</td>
</tr>
<tr>
<td>1.6.1 Cooling applications</td>
<td>5</td>
</tr>
<tr>
<td>1.6.1.1 Transformer cooling applications</td>
<td>5</td>
</tr>
<tr>
<td>1.6.1.2 Industrial cooling</td>
<td>5</td>
</tr>
<tr>
<td>1.6.1.3 Cooling of LED floodlight</td>
<td>6</td>
</tr>
<tr>
<td>1.6.1.4 Smart Fluids for cooling</td>
<td>7</td>
</tr>
<tr>
<td>1.6.1.5 Cooling of geothermal power Sources</td>
<td>7</td>
</tr>
<tr>
<td>1.6.2 Nanofluids in solar collectors</td>
<td>8</td>
</tr>
</tbody>
</table>
1.6.3 Nuclear Reactors 9
1.6.4 Other Potential Applications 10

1.7 REVIEW OF LITERATURE 10
1.7.1 Review on Ultrasonic Studies of Nanofluids 10
1.7.2 Review on Dielectric Studies of Nanofluids 12
1.7.3 Review on Viscosity Studies of Nanofluids 13
1.7.4 Review on Thermal Conductivity Studies of Nanofluids 16

1.8 OBJECTIVE OF THE WORK 23

2. CHARACTERIZATION OF MWCNTs 25
2.1 INTRODUCTION 25
2.2 STRUCTURE OF MWCNTs 25
2.3 PROPERTIES OF MWCNTs 29
2.4 CHARACTERIZATION OF PURE MWCNT, HYDROXYL (-OH) AND CARBOXYL (-COOH) FUNCTIONALIZED MWCNTs 30
2.4.1 X-Ray Diffractometer 30
 2.4.1.1 Bragg's Law 31
 2.4.1.2 Applications of XRD analysis 32
 2.4.1.3 XRD analysis of MWCNTs 32
2.4.2 FT-Raman Spectroscopy 35
 2.4.2.1 Principle 35
 2.4.2.2 Description 35
 2.4.2.3 Comparison of FT-Raman spectroscopy with Conventional Raman spectroscopy 36
 2.4.2.4 Instrumentation Techniques of FT-Raman Spectroscopy 36
 2.4.2.5 Advantages of FT-Raman spectroscopy 37
 2.4.2.6 Applications 37
 2.4.2.7 FT-Raman analysis of MWCNTs 37
2.4.3 FTIR Spectrometer

2.4.3.1 Principle

2.4.3.2 The Components of FTIR Spectrometers

2.4.3.3 Working

2.4.3.4 Applications

2.4.3.5 FT-IR analysis of MWCNTs

2.4.4 Transmission Electron Microscope

2.4.4.1 Components

2.4.4.2 Vacuum system

2.4.4.3 Optics

2.4.4.4 Display

2.4.4.5 Advantages of TEM

2.4.4.6 Applications

2.4.4.7 TEM analysis of MWCNTs

2.4.5 Energy dispersive X-ray analysis spectra

2.4.6 TGA-DTG/DSC analysis

3. PREPARATION OF MWCNT NANOFLOIDS

3.1 INTRODUCTION

3.2 STRUCTURE AND PROPERTIES OF BASE FLUIDS

3.2.1 Structure of Silicone oil

3.2.2 Properties of Silicone oil

3.2.3 Dowtherm A or biphenyl and diphenyl oxide

3.2.4 Structure of Dowtherm A

3.2.5 Properties of Dowtherm A

3.3 ULTRASONIC PROCESSOR
3.4 PREPARATION OF MWCNT NANOFLUIDS 64

4. CHARACTERIZATIONS OF MWCNT NANOFLUIDS 67

4.1 INTRODUCTION 67

4.2 ULTRASONIC STUDIES 68

4.2.1 Pulse-Echo-Velocity Meter 69

4.2.1.1 Ultrasonic parameters 70

4.2.1.2 Ultrasonic studies of Silicone oil based MWCNT nanofluids 72

4.2.1.3 Ultrasonic studies of Dowtherm A based MWCNT nanofluids 82

4.3 REFRACTIVE INDEX STUDIES 91

4.3.1 Abbe’s Refractometer 91

4.3.2 Optical properties: Refractive index measurements 92

4.3.2.1 Refractive index studies of Silicone oil based MWCNTs-nanofluids 92

4.3.2.2 Refractive index studies of Dowtherm A based MWCNTs-nanofluids 93

4.4 DIELECTRIC STUDIES 96

4.4.1 Dipole Meter 98

4.4.1.1 Dielectric parameters 100

4.4.1.2 Dielectric Studies on Silicone oil based MWCNT nanofluids 102

4.4.1.3 Excess dielectric constant and excess dipole moment of Silicone oil based MWCNT nanofluids 108

4.4.1.4 Dielectric Studies on Dowtherm A based MWCNT nanofluids 112

4.4.1.5 Excess dielectric constant and excess dipole moment of Dowtherm A based nanofluids 117
5. HEAT TRANSFER ANALYSIS

5.1 INTRODUCTION

121

5.2 DV-III ULTRA PROGRAMMABLE RHEOMETER

123

- 5.2.1 Viscosity Studies on Silicone oil based MWCNT nanofluids
- 5.2.2 Viscosity Studies on Dowtherm A based MWCNT Nanofluids

5.3 KD-2 PRO THERMAL PROPERTY ANALYSER

130

- 5.3.1 Thermal Conductivity Studies on Silicone oil based MWCNT nanofluids
- 5.3.2 Thermal Conductivity Studies on Dowtherm A based MWCNT nanofluids

6. CONCLUSIONS AND FUTURE WORK

141

6.1 CONCLUSIONS

141

6.2 FUTURE WORK

143

- 6.2.1 Stability of nanofluids
- 6.2.2 Particle size and pH value
- 6.2.3 Cost effective CNT synthesis

REFERENCES

145

LIST OF PUBLICATIONS

167

CURRICULUM VITAE

169

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No</th>
<th>Table captions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Properties of MWCNTs</td>
<td>29</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>The XRD-Parameters of MWCNTs</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Properties of Silicone oil</td>
<td>61</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Properties of Dowtherm A</td>
<td>62</td>
</tr>
<tr>
<td>Table 4.1(a)</td>
<td>Variation in the adiabatic compressibility and inter molecular free length values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 303K</td>
<td>78</td>
</tr>
<tr>
<td>Table 4.1(b)</td>
<td>Variation in the adiabatic compressibility and inter molecular free length values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 308K</td>
<td>78</td>
</tr>
<tr>
<td>Table 4.1(c)</td>
<td>Variation in the adiabatic compressibility and inter molecular free length values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 313K</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.1(d)</td>
<td>Variation in the adiabatic compressibility and inter molecular free length values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 318K</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.1(e)</td>
<td>Variation in the adiabatic compressibility and intermolecular free length values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 323K</td>
<td></td>
</tr>
<tr>
<td>Table 4.2(a)</td>
<td>Variation in the adiabatic compressibility and intermolecular free length values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 303K</td>
<td></td>
</tr>
<tr>
<td>Table 4.2(b)</td>
<td>Variation in the adiabatic compressibility and intermolecular free length values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 308K</td>
<td></td>
</tr>
<tr>
<td>Table 4.2(c)</td>
<td>Variation in the adiabatic compressibility and intermolecular free length values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 313K</td>
<td></td>
</tr>
<tr>
<td>Table 4.2(d)</td>
<td>Variation in the adiabatic compressibility and intermolecular free length values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 318K</td>
<td></td>
</tr>
<tr>
<td>Table 4.2(e)</td>
<td>Variation in the adiabatic compressibility and intermolecular free length values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 323K</td>
<td></td>
</tr>
<tr>
<td>Table 4.3(a)</td>
<td>Variation of refractive index (n) with different concentrations of Pure MWCNT-Silicone oil nanofluids at various temperatures</td>
<td></td>
</tr>
</tbody>
</table>
| Table 4.3(b) | Variation of refractive index (n) with different concentrations of OH-functionalized MWCNT-
Silicone oil nanofluids at various temperatures

Table 4.3(c) Variation of refractive index (n) with different concentrations of COOH-functionalized MWCNT-Silicone oil nanofluids at various temperatures

Table 4.3(d) Variation of refractive index (n) with different concentrations of Pure MWCNT-Dowtherm A nanofluids at various temperatures

Table 4.3(e) Variation of refractive index (n) with different concentrations of OH-functionalized MWCNT-Dowtherm A nanofluids at various temperatures

Table 4.3(f) Variation of refractive index (n) with different concentrations of COOH-functionalized MWCNT-Dowtherm A nanofluids at various temperatures

Table 4.4(a) Variation in the molar polarization and dipole moment values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 303K

Table 4.4(b) Variation in the molar polarization and dipole moment values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 308K

Table 4.4(c) Variation in the molar polarization and dipole moment values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 313K

Table 4.4(d) Variation in the molar polarization and dipole moment values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 318K
Table 4.4(e) Variation in the molar polarization and dipole moment values of Silicone oil-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 323K

Table 5.5(a) Variation in the molar polarization and dipole moment values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 303K

Table 4.5(b) Variation in the molar polarization and dipole moment values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 308K

Table 4.5(c) Variation in the molar polarization and dipole moment values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 313K

Table 4.5(d) Variation in the molar polarization and dipole moment values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 318K

Table 4.5(e) Variation in the molar polarization and dipole moment values of Dowtherm A-MWCNT nanofluids with different concentrations of MWCNTs at a temperature of 323K
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Figure caption</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Scheme of cooling system using MWCNTs nanofluid for 450 W LED floodlight</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Solar thermal collectors</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>(a) Two layer graphene, (b) Pure MWCNT, (c) OH-f-MWCNT & (d) COOH-f-MWCNT</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Shimadzu XRD-6000 X-ray diffraction units</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Plot of the X-ray diffraction geometry</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>XRD-spectra of (a) Pure MWCNTs, (b) OH-MWCNTs and (c) COOH-MWCNTs</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>FT-Raman spectrometer</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>FT-Raman spectra of (a) Pure MWCNTs, (b) OH-MWCNTs and (c) COOH-MWCNTs</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>FTIR Spectrometer</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Block diagram of an FTIR spectrometer</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Schematic of the Michelson interferometer</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>FT-IR spectra of (a) Pure MWCNTs, (b) OH-MWCNTs and (c) COOH-MWCNTs</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>(a) Schematic representation and (b) the layout of optical components in a basic TEM</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>TEM micrographs (a) clusters of Pure-MWCNTs (b) single Pure-MWCNTs</td>
<td>49</td>
</tr>
</tbody>
</table>
Figure 2.13 TEM micrographs (a) clusters of OH-functionalized-MWCNTs (b) single OH-functionalized-MWCNTs

Figure 2.14 TEM micrographs (a) clusters of COOH-functionalized-MWCNTs (b) single COOH-functionalized-MWCNTs

Figure 2.15 EDX Spectra of Pure MWCNT, OH and COOH f-MWCNTs

Figure 2.16 NETZSCH DSC 204

Figure 2.17 Principle of the Heat Flow DSC

Figure 2.18 TGA, DTG and DSC plot of (a) Pure MWCNT, (b) OH-f-MWCNT and (c) COOH-f-MWCNT

Figure 2.19 Specific heat capacity (Cp) values of Pure MWCNT, OH and COOH f-MWCNTs

Figure 3.1 Structure of Silicone oil (polydimethylsiloxane)

Figure 3.2 Structure of Dowtherm A

Figure 3.3 Ultrasonic processor (UP400S)

Figure 3.4 Schematic representation of Nanofluid preparation

Figure 4.1 Working principle of Digital Pulse Echo Velocity Meter

Figure 4.2 Variation of ultrasonic velocity (v) with different concentrations of MWCNTs in Silicone oil based nanofluids at various temperatures (a) Pure MWCNT, (b) OH functionalized MWCNT and (c) COOH functionalized MWCNT
Figure 4.3 Variation of acoustic impedance (Z) with different concentrations of MWCNTs in Silicone oil based nanofluids at various temperatures (a) Pure MWCNT, (b) OH functionalized MWCNT and (c) COOH functionalized MWCNT

Figure 4.4 Variation of ultrasonic velocity (v) with different concentrations of MWCNTs in Dowtherm A based nanofluids at various temperatures (a) Pure MWCNT, (b) OH functionalized MWCNT and (c) COOH functionalized MWCNT

Figure 4.5 Variation of acoustic impedance (Z) with different concentrations of MWCNTs in Dowtherm A based nanofluids at various temperatures (a) Pure MWCNT, (b) OH functionalized MWCNT and (c) COOH functionalized MWCNT

Figure 4.6 Schematic diagrams of Abbe’s Refractometer optical system

Figure 4.7 Dipole meter

Figure 4.8 Variation in the static dielectric constant values with concentration of MWCNT of (a) Pure MWCNT-Silicone oil nanofluids, (b) OH-functionalized MWCNT-Silicone oil nanofluids & (c) COOH-functionalized MWCNT-Silicone oil nanofluids

Figure 4.9 Variation in the excess dielectric constant values with concentration of MWCNTs (a)
Pure MWCNT-Silicone oil nanofluids, (b) OH-functionalized MWCNT-Silicone oil nanofluids & (c) COOH-functionalized MWCNT Silicone oil nanofluids

Figure 4.10 Variation in the excess dipole moment values with concentration of MWCNTs of (a) Pure MWCNT-Silicone oil nanofluids, (b) OH-functionalized MWCNT-Silicone oil nanofluids & (c) COOH-functionalized MWCNT Silicone oil nanofluids

Figure 4.11 Variation in the static dielectric constant values with concentration of MWCNTs of (a) Pure MWCNT-Dowtherm A nanofluids, (b) OH-functionalized MWCNT-Dowtherm A nanofluids & (c) COOH-functionalized MWCNT Dowtherm A nanofluids

Figure 4.12 Variation in the excess dielectric constant values with concentration of MWCNT of (a) Pure MWCNT-Dowtherm A nanofluids, (b) OH-functionalized MWCNT-Dowtherm A nanofluids & (c) COOH-functionalized MWCNT-Dowtherm A nanofluids

Figure 4.13 Variation in the excess dipole moment values with concentration of MWCNT of (a) Pure MWCNT-Dowtherm A nanofluids, (b) OH-functionalized MWCNT-Dowtherm A nanofluids & (c) COOH-functionalized MWCNT-Dowtherm A nanofluids

Figure 5.1 DV-III Ultra programmable Rheometer
Figure 5.2 Variation in the viscosity values of (a) Pure MWCNT, (b) OH functionalized MWCNT and (c) COOH functionalized MWCNT-Silicone oil nanofluids with different concentrations of MWCNTs at different temperatures

Figure 5.3 Variation in the viscosity values of (a) Pure MWCNT, (b) OH functionalized MWCNT and (c) COOH functionalized MWCNT-Dowtherm A nanofluids with different concentrations of MWCNTs at different temperatures

Figure 5.4 KD2 Pro Thermal properties analyzer

Figure 5.5 Variation in the thermal conductivity values of (a) Pure MWCNT, (b) OH functionalized MWCNT and (c) COOH functionalized MWCNT-Silicone oil nanofluids with different concentrations of MWCNTs at different temperatures

Figure 5.6 Variation in the thermal conductivity values of (a) Pure MWCNT, (b) OH functionalized MWCNT and (c) COOH functionalized MWCNT-Dowtherm A nanofluids with different concentrations of MWCNTs at different temperatures
LIST OF SYMBOLS AND ABBREVIATIONS

\(\beta \) - Adiabatic compressibility
\(\theta \) - Angle of diffraction
\(D \) - Average crystallite size
\(N_A \) - Avogadro’s number
\(K_B \) - Boltzmann constant
\(C_O \) - Capacitance of air
\(C_R \) - Capacitance of reference fluid
\(C_X \) - Capacitance of unknown fluid
\(X_2 \) - Concentration of solute
\(X_1 \) - Concentration of Solvent
\(D \) - Debye
\(\rho \) - Density of nanofluids
\(\varepsilon_R \) - Dielectric constant of reference fluid
\(\varepsilon_x \) - Dielectric constant of unknown fluid
\(\mu \) - Dipole moment
\(\delta \) - Dislocation density
\(\varepsilon^E \) - Excess dielectric constant
\(\mu^E \) - Excess dipole moment
\(g \) - Grams
\(d \) - Interlayer spacing
\(L_f \) - Intermolecular free length
\(K \) - Kelvin
\(f \) - Known frequency of ultrasonic waves
\(P \) - Molar Polarization
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>Molecular weight of base fluids</td>
</tr>
<tr>
<td>M_2</td>
<td>Molecular weight of nanotubes</td>
</tr>
<tr>
<td>MWCNT</td>
<td>Multi-walled carbon nanotube</td>
</tr>
<tr>
<td>n</td>
<td>Order of diffraction peak</td>
</tr>
<tr>
<td>a_0</td>
<td>Slope of static dielectric constant with</td>
</tr>
<tr>
<td></td>
<td>concentrations</td>
</tr>
<tr>
<td>a_{∞}</td>
<td>Slope of optical dielectric</td>
</tr>
<tr>
<td></td>
<td>constant with concentrations</td>
</tr>
<tr>
<td>Z</td>
<td>Specific acoustic impedance</td>
</tr>
<tr>
<td>ε</td>
<td>Static dielectric constant</td>
</tr>
<tr>
<td>K_T</td>
<td>Temperature dependant Jacobson constant</td>
</tr>
<tr>
<td>T</td>
<td>Temperature of the medium</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>v</td>
<td>Ultrasonic velocity of nanofluids</td>
</tr>
<tr>
<td>η</td>
<td>Viscosity of nanofluids</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
</tbody>
</table>