CONTENT

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>INTRODUCTION</th>
<th>1-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>What are Genetic markers?</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Types of genetic markers</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Application of Genetic markers in fisheries research</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>REVIEW OF LITERATURE</th>
<th>17-42</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nuclear DNA Markers: Minisatellites and Microsatellites</td>
<td>18</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Application of minisatellite to fisheries research</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Simple sequence marker (SSR) development</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Advantages of microsatellite markers</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Disadvantages associated with microsatellite</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Microsatellite DNA Isolation protocol</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Application of Microsatellites to fisheries research</td>
<td>29</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Population genetics</td>
<td>29</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Genome mapping</td>
<td>32</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Parentage and kinship analysis</td>
<td>36</td>
</tr>
<tr>
<td>2.5</td>
<td>Future application of microsatellite DNA markers in aquaculture genetics</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Cross-species utility of Microsatellite Marker</td>
<td>40</td>
</tr>
</tbody>
</table>
CHAPTER 3 MATERIALS AND METHODS

3.1 MATERIALS

3.1.1 Experimental Animals
3.1.2 Equipment and Instrument
3.1.3 Chemicals, enzymes and biological reagents
3.1.4 Molecular biology kits
3.1.5 Buffer and stock solutions
3.1.6 Oligonucleotides used

3.2 METHODS

3.2.1 Extraction and purification of Genomic DNA
3.2.2 Checking the Quality of DNA
3.2.3 Quantification of DNA
3.2.4 Insert DNA preparation
3.2.5 Vector DNA preparation
3.2.6 Dephosphorylation of linearized vector DNA
3.2.7 Ligation
3.2.8 Competent cell preparation
3.2.9 Transformation
3.2.10 Colony Hybridization

3.2.10.1 Oligonucleotides tailing
3.2.10.2 Determination of labelling efficiency for colony hybridization
3.2.10.3 Colony hybridisation and Screening of Positive clones

3.2.11 Plasmid DNA isolation

3.2.11.1 Preparation of cells
3.2.11.2 Lysis of cells
3.2.11.3 Recovery of Plasmid DNA 72
3.2.12 Confirmation of the recombinant clone using RE digestion and colony PCR 73
3.2.12.1 Secondary screening of the recombinant clone using colony PCR 73
3.2.13 Sequencing of the Positive clones 76
3.2.14 Primer designing 77
3.2.14.1 Standardization of the annealing temperature for the designed primers 77
3.2.15 PCR using microsatellite primers 78
3.2.16 Statistical Analyses: Analysis of Microsatellite Polymorphism 78

CHAPTER 4 RESULTS 81-108

4.1 A Partial microsatellite enriched genomic library was developed for Garra gotyla 81
4.2 Isolation of high molecular weight genomic DNA from sampled individuals 81
4.2.1 The quality of the isolated DNA 81
4.2.2 The quantity of isolated DNA was estimated by UV-Vis Spectrophotometer 82
4.3 Insert DNA preparation 85
4.4 Vector DNA preparation 85
4.5 Ligation of insert DNA to BamHI digested/ dephosphorylated pUC19 vector 88
4.6 Transformation 88
4.7 Colony hybridisation 88
4.7.1 Test of probe labelling efficiencies 88
4.7.2 Colony hybridisation and screening of positive clones 89
4.8 Confirmation of the recombinant clone using RE digestion and colony PCR
4.8.1 Secondary screening of the recombinant clone using colony PCR
4.9 Sequencing of the Positive clones
4.10 Primer designing
4.10.1 Standardization of annealing temperature for the designed primer
4.11 Validation of the isolated Markers within species and other species of the family Cyprindae
4.12 Statistical Analysis: Analysis of Microsatellite Polymorphism
4.12.1 Alleles frequency distribution
4.12.2 Hardy-Weinberg equilibrium and linkage disequilibrium
4.12.3 Null alleles estimation
4.12.4 Polymorphism Information content (PIC)

CHAPTER 5 DISCUSSION
5.1 Development of microsatellite enriched partial genomic library
5.1.1 Identification and isolation of microsatellite loci
5.2 Characterization of highly polymorphic microsatellite marker

CHAPTER 6 SUMMARY AND CONCLUSION
REFERENCES
ANNEXURE 1