List of Figures

2.1 Color-singlet and color-octet contribution to charmonium production in $p\bar{p} \rightarrow c\bar{c} + X$ at the Tevatron as compared to CDF experimental data [6]: (a) for J/ψ, (b) $\psi(2S)$ production [16]. ... 6

2.2 The Polar angle distribution asymmetry α for prompt J/ψ production in $p\bar{p} \rightarrow J/\psi (\mu^+\mu^-) + X$ at the Tevatron as a function of p_t compared to experimental data [10]: (a) for J/ψ, (b) for $\psi(2S)$ [16]. 6

2.3 Diagrams for charmonium production at e^+e^- annihilation at $\sqrt{s} \approx 10.6$ GeV through color-singlet and color-octet channels. .. 8

2.4 NRQCD predictions for energy spectra of direct J/ψ's from different processes: $e^+e^- \rightarrow J/\psi + gg$, $e^+e^- \rightarrow J/\psi + c\bar{c}$, $e^+e^- \rightarrow J/\psi + q\bar{q}$, and $e^+e^- \rightarrow J/\psi + g$ [15]. ... 10

2.5 X-axis is given in z. $\alpha(z)$ for different J/ψ production mechanisms [15]. ... 10

2.6 X-axis is given in z. $\alpha(z)$ for sum of all production mechanisms [15]. 11

2.7 Angular distribution parameter A as a function of the momentum p (momentum of J/ψ in CM) of the ψ for e^+e^- annihilation at $\sqrt{s} \approx 10.6$ GeV. The solid line is the prediction of the color-singlet model. The hatched region is the band of predictions in the endpoint region, assuming that this region is dominated by color-octet production mechanism. [13] 11

2.8 Integrated cross sections for the gluon scattering (dashed line) and charm quark fragmentation contribution (dotted line) modes plotted as a function of CM collision energy (\sqrt{s}). The sum of the two is shown by the solid curve. The approximate charm quark fragmentation cross section is depicted by the dot-dashed curve. [14] ... 12

3.1 Configuration of the KEKB accelerator. .. 15

3.2 The first four Υ excited states. The KEKB is operating on the Υ (4S) resonance [20]. .. 16
LIST OF FIGURES

3.3 Side view of the Belle detector. ... 17
3.4 r-ϕ and z view of silicon vertex detector. .. 19
3.5 (a) Impact parameter resolution in xy plane, (b) Impact parameter resolution in z direction. ... 20
3.6 Central drift chamber (CDC). ... 21
3.7 p_t dependance of p_t resolution for cosmic rays. The solid curve shows the fitted result (0.2% p_t ⊕ 0.290%/β) and dotted curve the ideal expectation (0.118% p_t ⊕ 0.195%) for $\beta = 1$ particles. .. 22
3.8 Truncated mean of dE/dx versus momentum observed in collision data. .. 23
3.9 The arrangement of the ACC at the central part of the Belle detector. 24
3.10 Schematic drawing of a typical ACC counter module: (a) barrel and (b) end-cap ACC. ... 25
3.11 K efficiency vs lab momentum (circles), π fake rate vs lab momentum (triangles), measured with $D^{*+} \rightarrow D^0(K\pi) + \pi^+$ decays. .. 26
3.12 Configuration of the TOF/TSC. ... 27
3.13 Mass distribution from TOF measurement for particle momenta below 1.2 GeV/c. ... 27
3.14 π^\pm/K^\pm separation by TOF. ... 28
3.15 K efficiency vs lab momentum (circles), π fake rate vs lab momentum (triangles), measured with $D^{*+} \rightarrow D^0(K\pi) + \pi^+$ decays using CDC, ACC and TOF sub-detectors. .. 29
3.16 Overall Configuration of ECL. ... 30
3.17 Two photon invariant mass distribution for hadronic events: (a) $\pi^0 \rightarrow \gamma\gamma$, (b) $\eta \rightarrow \gamma\gamma$, where each of the photon energies was required to be above 30 MeV in the barrel region. ... 30
3.18 Electron detection efficiency vs momentum (Filled-circles), pion fake rate vs momentum (empty-boxes). ... 31
3.19 Configuration of the superconductive magnetic coil. .. 32
3.20 The configuration of the EFC. ... 32
3.21 Belle Trigger system. ... 33
3.22 Belle DAQ system. ... 34

4.1 Schematic view of barrel KLM. ... 36
4.2 Schematic view of endcap KLM. ... 36
4.3 Typical signal of glass-electrod RPC. ... 37
LIST OF FIGURES

4.4 Barrel RPC showing internal spacers... 38
4.5 End-cap RPC showing internal spacers... 38
4.6 Cut-away view of an end-cap RPC module... 39
4.7 Superlayer structure... 40
4.8 KLM gas distribution system... 40
4.9 KLM gas exhaust system.. 41
4.10 Time multiplex scheme.. 42
4.11 The KLM efficiency as function of high voltage, Top: efficiency of the barrel KLM, Bottom: efficiency of the endcap KLM... 43
4.12 The KLM efficiency as a function of the threshold applied, Top: efficiency of Barrel KLM, Bottom: efficiency of the endcap KLM .. 43
4.13 Spatial resolution of a superlayer.. 44
4.14 Time resolution of the KLM system... 44
4.15 Dark current vs. Day (Barrel-Forward-Sector1-Layer0-Inner)......................... 46
4.16 Dark current vs. Day (endcap-Backward-Sector0-Layer0-Outer).................... 47
4.17 Muon detection efficiency vs. momentum, measured by $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-\mu^+\mu^-$ (circles), Pion fake rate vs. momentum measured by $K_s \rightarrow \pi\pi$ (triangles). ... 48
4.18 (a) Muon detection efficiency vs. polar angle, (b) Muon detection efficiency vs. azimuthal angle (the barrel only). Both measured using $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-\mu^+\mu^-$ (1.0 GeV/c < p_μ < 3.0 GeV/c). .. 49
4.19 Ratio of the efficiency for positive muons to negative muons, measured with $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-\mu^+\mu^-$. ... 50
4.20 Di-muon event with both muons detected in the barrel region of KLM detector and the K_L neutral cluster detected with no charged track associated. .. 51
4.21 Invariant mass of $\mu^+\mu^-$ for single muon-tagged (open), double muon-tagged (shaded). ... 51
4.22 Fake rate of kaon from $D \rightarrow K\pi$. ... 52
4.23 (a) Detection efficiency for K_L determined from simulations as a function of (a) momentum, (b) $\cos\theta$. ... 52
4.24 (a) Detection efficiency of single K_L as a function of the ECL pre shower association angle, (b) Fake rate as a function of the ECL shower association. 53
4.25 Difference between detected and generated directions of K_L, (a) without ECL hit association, (b) with ECL hit association. 53
5.1 The distributions of observables used in hadronic events selection for the data before cuts. (a) Charged multiplicity, (b) Number of neutral clusters in the ECL, (c) total energy deposition in ECL, (d) R2: The ratio of second and zeroth-order Fox-Wolfram moments of the events. 56
5.2 (a) The invariant mass of $\pi\pi$ from phase space, (b) The invariant mass of $\pi\pi$ observed in the data. 58
5.3 (a) The di-electron mass for $\Upsilon(4S)$ data with $p_{e^{+}e^{-}}^* > 2.0$ GeV/c, (b) The di-muon mass for $\Upsilon(4S)$ data with $p_{\mu^{+}\mu^{-}}^* > 2.0$ GeV/c, (c) The di-electron mass for continuum data, (d) The di-muon mass for continuum data. 60
5.4 (a) shows the mass difference for on-resonance data $p_{\psi(2S)}^* > 2.0$ GeV/c, (b) shows the mass difference for off-resonance data, $p_{\psi(2S)}^* > 2.0$ GeV/c. 61
5.5 The distribution of mass difference between $J/\psi\gamma$ and J/ψ for on-resonance data, $p_{\chi_{c1,2}}^* > 2.0$ GeV/c. 62
5.6 Charged tracks multiplicity distribution for accepted events with J/ψ candidate. 63
5.7 Momentum of J/ψ in center of mass system. 64
5.8 The ratio between second and zeroth Fox-Wolfram moments. 64
5.9 CM momentum distributions of prompt charmonia, corrected for efficiency: (a) J/ψ (filled points) and J/ψ from $\psi(2S) \rightarrow J/\psi X$ (open points), (b) $\psi(2S)$. 72
5.10 Production angle distribution for J/ψ from continuum production in three momentum intervals: (a) $2.0 < p_{J/\psi}^* < 2.6$ GeV/c, (b) $2.6 < p_{J/\psi}^* < 3.4$ GeV/c, (c) $3.4 < p_{J/\psi}^* < p_{J/\psi(\text{max})}^*$ GeV/c. Curves represent the results of fits to $1 + A \cdot \cos^2 \theta^*$. 73
5.11 Production angle distribution for J/ψ from continuum production in two momentum intervals: (a) $2.0 < p_{J/\psi}^* < p_{J/\psi(\text{max})}^*$ GeV/c, (b) $2.0 < p_{J/\psi}^* < 3.4$ GeV/c. Curves represent the results of fits to $1 + A \cdot \cos^2 \theta^*$. 74
5.12 Definition of J/ψ polarization angle θ_\parallel. 74
5.13 Polarization distribution for J/ψ from continuum production in three momentum intervals: (a) $2.0 < p_{J/\psi}^* < 2.6$ GeV/c, (b) $2.6 < p_{J/\psi}^* < 3.4$ GeV/c, (c) $3.4 < p_{J/\psi}^* < p_{J/\psi(\text{max})}^*$ GeV/c. Curves represent the results of fits to $1 + \alpha \cdot \cos^2 \theta^*$. 75
5.14 Polarization distribution for J/ψ from continuum production in two momentum intervals: (a) $2.0 < p_{J/\psi}^* < p_{J/\psi(\text{max})}^*$ GeV/c, (b) $2.0 < p_{J/\psi}^* < 3.4$ GeV/c. Curves represent the results of fits to $1 + \alpha \cdot \cos^2 \theta^*$. 76
A.1 (a) Charged track multiplicity, (b) ratio between second and zeroth Fox-Wolfram moments, (c) J/ψ momentum in CM. (d) cosine of the production angle θ^* between beam direction and J/ψ three momentum in CM without acceptance correction. 80

A.2 filled circle histogram shows the J/ψ momentum in CM predicted from $e^+e^- \rightarrow J/\psi\gamma$ simulated process and empty circle histogram is from data requiring charged track multiplicity = 4 .. 81

B.1 (a) Charged track multiplicity, (b) Ratio between second and zeroth Fox-Wolfram moments, (c) The J/ψ momentum in CM, (d) cosine of the production angle θ^* between beam direction and J/ψ three momentum in CM without acceptance correction. .. 83

B.2 Filled circles histogram shows the J/ψ momentum in CM predicted from $e^+e^- \rightarrow \psi(2s)\gamma$ process and empty circles histogram is from data requiring charged track multiplicity = 4................................. 84

C.1 (a) Invariant mass of di-electron, (b) Invariant mass of di-electron requiring charge track multiplicity = 3, (c) Invariant mass of di-muon, (d) Invariant mass of di-muon requiring charge track multiplicity = 3. 86

C.2 (a) Di-lepton mass distribution in charge track multiplicity = 4 event sample before dr cut. (b) Di-lepton mass distribution after dr cut. 87

D.1 (a) Charged track multiplicity, (b) Ratio between second and zeroth Fox-Wolfram moments, (c) J/ψ momentum in CM. (d) cosine of the production angle θ^* between beam direction and J/ψ three momentum in CM without acceptance correction from $e^+e^- \rightarrow J/\psi + g$ process. 89