<table>
<thead>
<tr>
<th>FIG. NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sources of CH₄</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Fate of CH₄ produced in a flooded rice field</td>
<td>21</td>
</tr>
<tr>
<td>3.</td>
<td>Experimental arrangement for CH₄ efflux measurement in rice fields by manual close chamber method</td>
<td>61</td>
</tr>
<tr>
<td>4.</td>
<td>Cumulative CH₄ emission under different crop sequences</td>
<td>79</td>
</tr>
<tr>
<td>5.</td>
<td>Cumulative CH₄ emission from pots planted to rice plants (cv Lalat) under different water regimes</td>
<td>81</td>
</tr>
<tr>
<td>6.</td>
<td>Effect of continuous and alternate flooded regimes on CH₄ efflux from rice (cv Lalat) grown under greenhouse conditions</td>
<td>82</td>
</tr>
<tr>
<td>7.</td>
<td>Growth of rice plants (cv Lalat) under different water regimes in greenhouse conditions</td>
<td>93</td>
</tr>
<tr>
<td>8.</td>
<td>Typical growth stages of rice plants (cv Lalat) grown in plots under different water regimes</td>
<td>95</td>
</tr>
<tr>
<td>9.</td>
<td>Cumulative CH₄ emission from flooded field plots planted to rice (cv CR-749-20-2) under split application of urea-N</td>
<td>97</td>
</tr>
<tr>
<td>10.</td>
<td>CH₄ efflux from flooded fields planted to rice (cv CR-749-20-2) under split application of urea-N</td>
<td>98</td>
</tr>
<tr>
<td>11.</td>
<td>Influence of fertilizer N application on CH₄ emission pattern during vegetative and reproductive stages of the growth period</td>
<td>100</td>
</tr>
<tr>
<td>12.</td>
<td>Total dry matter accumulation in rice (cv CR-749-20-2) under split application of urea-N</td>
<td>113</td>
</tr>
<tr>
<td>13.</td>
<td>Cumulative CH₄ emission from flooded fields planted to different rice cultivars</td>
<td>130</td>
</tr>
</tbody>
</table>