REFERENCES


Beauchamp,.C. and Fridovitch, I. 1970. A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J.Biol. Chem. 245:4641-4646


Braber, J.M. 1980. Catalase and peroxidase in primary bean leaves during development and senescence. Z.Pflanzen Physiol. 97:135-144


Camprubi, P. and Nichols, R. 1978. Effect of ethylene on carnation flower (Dianthus caryophyllus) cut at different stages of development. J.Jort. Sci. 53: 17-22


Fischer, C.W. 1950. Ethylene gas, a problem in cut flower storage. N.Y. State Flower Grower Bul. 61:1-4


Horie, K. 1961. The behaviour of the petals in the fading of the flowers of *Tradescantia reflexa*. Protoplasma. 53:377-386


Kende, H. and Hanson, A.D. 1976. Relationship between ethylene evolution and senescence in morning glory flower tissue. Plant Physiol. 57:523-527


Matile, P. 1975. The Lytic compartment of plant cells. Springer-Verlag, New York


Mor, Y and Reid, M.S. 1981. Isolated Petals—A useful system for studying flower senescence. Acta Hort. 113:19-25


Nichols, R. 1968. The response of carnations (Dianthus caryophyllus) to ethylene. J. Hort. Sci. 43:335-349


Nichols, R. 1976. Cell enlargement and sugar accumulation in the gynoecium of the glass house carnation (Dianthus caryophyllus) induced by ethylene. Planta. 130:47-52


Parups, E.V., 1976. Acid and alkaline inorganic pyrophosphatases in senescing flowers of rose, carnations and *Chrysanthemum* *Can. J. Plant. Sci.* 56:525-530


Patra, H.K. 1979. Studies on leaf senescence; Biochemical and enzymatic changes. Ph.D. Thesis, Utkal University, India


Veen, H. 1985. Antagonistic effect of Silver thiosulphate or 2,5-norbornadiene on 1-aminocyclopropane-1-carboxylic acid-stimulated growth of pistils in carnation buds. Physiol. Plant. 65: 2-8


Wiemken, V., and Wiemken, A. 1975. Dichtemarkierung von β-Glucosidensen in welkenden Bluten von Ipomoea tricolor (cav.), Z. Pflanzenphysiol. 75:186-190


