<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Brief background of organotins.</td>
<td>1-8</td>
</tr>
<tr>
<td>1.2 Physiochemical properties of organotins.</td>
<td>8-9</td>
</tr>
<tr>
<td>1.3 Applications of organotins.</td>
<td>9-10</td>
</tr>
<tr>
<td>1.4 Fate of organotin compounds in the environment.</td>
<td>10-14</td>
</tr>
<tr>
<td>1.5 Organotin tolerant marine bacteria.</td>
<td>14-15</td>
</tr>
<tr>
<td>1.6 Degradation of Organotin compounds by a biotic and biotic factors.</td>
<td>15-23</td>
</tr>
<tr>
<td>1.7 Heavy metal tolerance in TBC resistant bacteria.</td>
<td>23-26</td>
</tr>
<tr>
<td>1.8 Antibiotic resistance in TBT resistant bacteria.</td>
<td>26-27</td>
</tr>
<tr>
<td>1.9 Biochemical basis of TBT resistance in bacteria.</td>
<td>27-30</td>
</tr>
<tr>
<td>1.9.1 TBT induced pigment production.</td>
<td></td>
</tr>
<tr>
<td>1.9.2 TBT induced EPS production.</td>
<td></td>
</tr>
<tr>
<td>1.9.3 Protein profile of TBT resistant bacteria.</td>
<td></td>
</tr>
<tr>
<td>1.10 Genetic basis of TBT resistance in bacteria.</td>
<td>30-31</td>
</tr>
</tbody>
</table>
CHAPTER II
MATERIALS AND METHODS

2.1 Collection of environmental samples. 46

2.2 Physicochemical analysis of sediment & water samples. 46-50
2.2.1 pH

2.2.2 Temperature

2.2.3 Salinity (NaCl)

2.2.4 Alkalinity

2.2.5 Organic content

2.2.6 Nitrite content (NO₂)

2.2.7 Nitrate content (NO₃)

2.2.8 Phosphate content (PO₄)

2.3 Determination of viable count of TBT resistant bacteria isolates 50

2.4 Screening of TBTC resistant bacterial isolates 50

2.5 Maintenance of TBTC resistant bacterial isolate 51

2.6 Identification of TBTC resistant bacterial isolate 51-54

2.6.1 Microscopy

2.6.1.a Phase Contrast Microscopy

2.6.1.b Scanning electron microscopy (Appendix-D)

2.6.3 Physiological and biochemical characterization of TBTC resistant bacterial isolates.

2.7 Determination of environmental optima's for TBTC resistant bacterial isolates 54-55

2.7.1 Determination of optimum pH for growth of isolates

2.7.2 Determination of optimum temperature for growth of marine isolates

2.7.3 Determination of optimum salinity (NaCl Conc⁰) for the growth of bacterial isolates.
2.8 Determination of organotin tolerance limit of bacterial isolates.

2.9 Determination of cross tolerance limit of bacterial isolates to Hg, Cd and As

2.9.1 Heavy metal
2.9.2 Determination of MIC for different metals
2.9.3 Metal Tolerance Limits.

2.10 Determination of antibiotic resistance of TBTC tolerant bacterial isolates.

2.10.1 Antibiotic Resistance

2.11 Study of growth behavior of TBTC resistant isolates in different media (ZMB, NB, LB and MSM).

2.12 Selection of potential strains for TBTC degradation studies

2.13 Biochemical characterization of *Alcaligenes* sp. 2-6.

2.13.1 TBTC utilization and growth of bacterial cells.
2.13.2 Regulation of TBTC toxicity by thiol (β-mercaptoethanol) and chelating agent (EDTA-Na₂) analysis.
2.13.3 Effect of selected carbon sources on growth of *Alcaligenes* sp. 2-6.
2.13.4 Selection of suitable media for organotin (TBTC and DBT) degradation.

2.14 Study of organotin degradation (TLC profile & Spectrophotometric analysis)

2.14.1 Time course study of TBTC degradation

2.15 Study of TBT induced EPS production

2.15.1 Hydrolysis of the Exopolymer
2.15.2 Wet weight/Dry weight
2.15.3 Correlation of growth with EPS production
2.15.4 Physiological characterization of Exopolymer
2.15.5 FTIR scan of EPS produced by *Alcaligenes* sp. 2-6 in ZMB and MSM + 5 mM TBTC.
CHAPTER II
MATERIALS AND METHODS

2.1 Collection of environmental samples. 46
2.2 Physicochemical analysis of sediment & water samples. 46-50
 2.2.1 pH
 2.2.2 Temperature
 2.2.3 Salinity (NaCl)
 2.2.4 Alkalinity
 2.2.5 Organic content
 2.2.6 Nitrite content (NO₂)
 2.2.7 Nitrate content (NO₃)
 2.2.8 Phosphate content (PO₄)
2.3 Determination of viable count of TBT resistant bacteria isolates 50
2.4 Screening of TBTC resistant bacterial isolates 50
2.5 Maintenance of TBTC resistant bacterial isolate 51
2.6 Identification of TBTC resistant bacterial isolate 51-54
 2.6.1 Microscopy
 2.6.1.a Phase Contrast Microscopy
 2.6.1.b Scanning electron microscopy (Appendix-D)
 2.6.3 Physiological and biochemical characterization of TBTC resistant bacterial isolates.
 2.7 Determination of environmental optima’s for TBTC resistant bacterial isolates 54-55
 2.7.1 Determination of optimum pH for growth of isolates
 2.7.2 Determination of optimum temperature for growth of marine isolates
 2.7.3 Determination of optimum salinity (NaCl Conc⁰) for the growth of bacterial isolates.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>Determination of organotin tolerance limit of bacterial isolates.</td>
</tr>
<tr>
<td>2.9</td>
<td>Determination of cross tolerance limit of bacterial isolates to Hg, Cd and As</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Heavy metal</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Determination of MIC for different metals</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Metal Tolerance Limits.</td>
</tr>
<tr>
<td>2.10</td>
<td>Determination of antibiotic resistance of TBTC tolerant bacterial isolates.</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Antibiotic Resistance</td>
</tr>
<tr>
<td>2.11</td>
<td>Study of growth behavior of TBTC resistant isolates in different media (ZMB, NB, LB and MSM).</td>
</tr>
<tr>
<td>2.12</td>
<td>Selection of potential strains for TBTC degradation studies</td>
</tr>
<tr>
<td>2.13</td>
<td>Biochemical characterization of Alcaligenes sp. 2-6.</td>
</tr>
<tr>
<td>2.13.1</td>
<td>TBTC utilization and growth of bacterial cells.</td>
</tr>
<tr>
<td>2.13.2</td>
<td>Regulation of TBTC toxicity by thiol (β-mercaptoethanol) and chelating agent (EDTA-Na₂) analysis.</td>
</tr>
<tr>
<td>2.13.3</td>
<td>Effect of selected carbon sources on growth of Alcaligenes sp. 2-6.</td>
</tr>
<tr>
<td>2.13.4</td>
<td>Selection of suitable media for organotin (TBTC and DBT) degradation.</td>
</tr>
<tr>
<td>2.14</td>
<td>Study of organotin degradation (TLC profile & Spectrophotometric analysis)</td>
</tr>
<tr>
<td>2.14.1</td>
<td>Time course study of TBTC degradation</td>
</tr>
<tr>
<td>2.15</td>
<td>Study of TBT induced EPS production</td>
</tr>
<tr>
<td>2.15.1</td>
<td>Hydrolysis of the Exopolymer</td>
</tr>
<tr>
<td>2.15.2</td>
<td>Wet weight/Dry weight</td>
</tr>
<tr>
<td>2.15.3</td>
<td>Correlation of growth with EPS production</td>
</tr>
<tr>
<td>2.15.4</td>
<td>Physiological characterization of Exopolymer</td>
</tr>
<tr>
<td>2.15.5</td>
<td>FTIR scan of EPS produced by Alcaligenes sp. 2-6 in ZMB and MSM + 5 mM TBTC.</td>
</tr>
</tbody>
</table>
2.16 Study of TBTC induced pigment production by *Alcaligenes* sp. 2-6.

2.16.1 Pigment extraction

2.17 Protein profile under TBTC stress

2.17.1 Extraction of cellular proteins

2.17.2 Estimation of protein concentration

2.17.3 SDS-Polyacrylamide gel electrophoresis

2.17.4 Polyacrylamide gel staining

2.17.4.1 Coomassie brilliant blue staining

2.17.5 Gel photography

2.18 Molecular biological studies of *Alcaligenes* sp. 2-6 (strain S3)

2.18.1 Plasmid purification and agarose gel electrophoresis

2.18.1.a Alkaline Lysis Method (Birnboim and Doly, 1979):

2.18.1.b Boil Prep method (Holmes and Quigley, 1979):

2.18.1.c Kado and Liu. (Kado and Liu 1981, Modified)

2.18.2 Gel Electrophoresis of plasmid DNA

 a. Preparation of gel slabs:

 b. Loading of DNA sample:

 c. Running of the gel:

 d. Visualization of DNA:

2.18.3 Restriction digestion of plasmid DNA

2.18.4 Plasmid curing with acridine orange

2.18.5 Genomic DNA purification and estimation.

2.18.6 Identification and localization of TBT resistant gene using specific PCR Primers.
CHAPTER III

PHYSICO-CHEMICAL CHARACTERIZATION OF ENVIRONMENTAL SAMPLES, VIABLE COUNT, SCREENING, IDENTIFICATION AND PHYSIOLOGICAL CHARACTERIZATION OF TBTC RESISTANT MARINE BACTERIAL ISOLATES

3.1 Physicochemical characteristics of environmental samples 74-77
3.2 Viable count of bacteria in environmental samples 77-79
3.3 Screening, isolation, purification and identification of TBTC resistant bacterial strains. 79-81
3.3.1 Identification of TBTC resistant bacterial isolates
3.4 Biological Characterization of TBTC resistant bacterial strains 81-84
3.4.1 TBTC tolerance limits
3.4.2 Optimum temperature for growth
3.4.3 Optimum pH for growth
3.4.4 Optimum salinity for growth
3.5 Study of growth behavior of TBTC resistant bacterial isolates in different growth medium (ZMB, NB, LB and MSM supplemented with TBTC). 85-86
3.6 Cross tolerance to heavy metals (Hg, Cd and As) 87-92
3.6.1 Cadmium (Cd^{2+})
3.6.2 Mercury (Hg^{2+})
3.6.3 Arsenic (As)
3.7 Antibiotic resistance 92-94
3.8 Selection of potent TBTC resistant strain for degradation studies 94
CHAPTER IV

PHYSIOLOGICAL AND BIOCHEMICAL CHARACTERIZATION OF HIGHLY TBTC TOLERANT Alcaligenes sp. 2-6 (strain S3)

4.1 Selection of suitable growth medium for TBTC degradation study 125-126
4.2 Effect of selected carbon sources on growth 126-128
4.2.1 Carbon Sources: Glucose, Glycerol, Succinate and Ethanol
4.3 TBTC utilization and growth. 128-129
4.4 Effect of thiol (β-mercaptoethanol) and chelating agent (EDTA-Na₂) on TBTC toxicity. 129-130
4.5 TBTC induced EPS production. 130-135
4.5.1 Chemical analysis of EPS
4.5.2 Fourier Transformed Infrared Spectroscopy (FTIR) of the exopolymer.
4.6 TBTC induced pigment production. 135-137
4.6.1 Identification of fluorescent pigment.
4.7 Organotin degradation (TBTC & DBTC). 137-140
4.7.1 Spectrophotometric analysis of Bacterial Cell extract
4.7.2 TLC analysis of Bacterial Cell extract
4.7.3 Time course study of TBTC degradation
4.8 Protein profile 140-143
CHAPTER V

MOLECULAR BIOLOGICAL AND GENETIC CHARACTERIZATION OF TBTC TOLERANT SELECTED STRAIN *Alcaligenes* sp. 2-6 (strain S3)

RESULT AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Purification of plasmid DNA of Alcaligenes sp. 2-6 and Agarose Gel Electrophoresis.</td>
<td>167</td>
</tr>
<tr>
<td>5.2 Restriction mapping and Agarose gel electrophoresis of Plasmid DNA of Alcaligenes sp. 2-6.</td>
<td>167-168</td>
</tr>
<tr>
<td>5.3 Acridine orange curing of plasmid DNA of Alcaligenes sp. 2-6.</td>
<td>168-170</td>
</tr>
<tr>
<td>5.4 Identification and localization of TBTC resistance genes using specific PCR primers and Genomic DNA as template.</td>
<td>170-171</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARİY</td>
<td>176-179</td>
</tr>
<tr>
<td>FUTURE PLAN</td>
<td>180</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>181-203</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>204-236</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>237</td>
</tr>
</tbody>
</table>