LIST OF ABBREVIATIONS

\(k' \) First order rate constant
\(Q^* \) The complete partition function for the activated complex excluding that for the reaction coordinate
\(Q \) Complete partition function for the reactant
\(E \) Activation energy
\(E_0 \) Change in the zero point energy
\(A \) Pre-exponential factor
\(a \) Area under the DTA/DSC curve
\(k \) Boltzmann constant
\(h \) Planck's constant
\(R \) Gas constant
\(TG \) Thermogravimetry
\(DTA \) Differential Thermal Analysis
\(DSC \) Differential Scanning Calorimetry
\(C_s \) Heat capacities of the sample
\(C_r \) Heat capacities of the reference
\(T_s \) The sample temperature
\(T_r \) The reference temperature
\(R \) Thermal resistance
\(\Delta H \) Enthalpy change
\(\Delta S^* \) Entropy of activation
\(T \) Temperature
\(n \) Order parameter
\(T_s \) DTG peak temperature
\(T_p \) DTA peak temperature
\(T_i \) Temperature of inception
\(T_f \) Temperature of completion
\(\alpha \) The fractional decomposition
\(w_t \) Mass loss at time \(t \)
\(w \) Maximum mass loss in the TG experiment for the reaction under investigation
\(m_0 \) Initial mass of the sample
\(m_t \) The mass at time, \(t \)
\(m_\infty \) The mass at the end of the reaction
\(e \) \(T - T_s \)
\(\phi \) Heating rate
\(\Delta T \) The difference in temperature, \(T_s - T_r \)
\(r \) Correlation coefficient
\(F \) Fisher constant
\(F(\alpha, T) \) Conversion temperature cross term
\(\rho \) Density
\(N/N_0 \) Number of moles at time \(t \) and initial
\(f(\alpha) \) Conversion function
\(g(\alpha) \) Conversion integral \(da/\alpha \)
\(q \) Quantity of heat
\(q(t) \) Rate of heat change
LIST OF TABLES

Table No

1.1 Classification of thermoanalytical techniques
2.1 Commonly used g(α) forms for solid-state reactions
3.1 Analytical results for the copper(II) amine complexes
3.2 Infra-red spectral bands (in cm\(^{-1}\)) of copper(II) amine complexes
3.3 Electronic spectral bands of copper(II) amine complexes (solid-state)
4.1 Phenomenological data for the thermal decomposition of copper(II) sulphate complexes
4.2 X-ray powder diffraction data (experimental)
4.3 X-ray powder diffraction data for the final thermolysis product of [Cu(NH\(_3\))\(_4\)]SO\(_4\)·H\(_2\)O
4.4 Endothermic reaction temperatures and ΔH values for the thermal decomposition of copper(II) amine sulphate complexes from DTA curves
4.5 X-ray powder diffraction data (experimental)
4.6 α and Temperature (K) values for the thermal decomposition of tetraamminecopper(II) sulphate monohydrate from TG
4.7 α and Temperature (K) values for the thermal decomposition of tetraamminecopper(II) sulphate monohydrate from DTA
4.8 α and Temperature (K) values for the thermal decomposition of tris-(ethylenediamine)copper(II) sulphate
4.9 Kinetic parameters for the decomposition of tetraamminecopper(II) sulphate monohydrate using nonmechanistic equations from TG data
4.10 Kinetic parameters for the decomposition of tetraamminecopper(II) sulphate monohydrate using nonmechanistic equations from DTA data

4.11 Kinetic parameters for the deamination of tris(ethylenediamine)-copper(II) sulphate using nonmechanistic equations from TG and DTA data

4.12 Kinetic parameters for the decomposition of tetraamminecopper(II) sulphate monohydrate using mechanistic equations from TG data

4.13 Kinetic parameters for the decomposition of tetraamminecopper(II) sulphate monohydrate using mechanistic equations from DTA data

4.14 Kinetic parameters for the deamination of tris(ethylenediamine)-copper(II) sulphate using mechanistic equations from TG and DTA data

5.1 Phenomenological data for the thermal decomposition of tetraamminecopper(II) nitrate and bis(ethylenediamine)copper(II) nitrate

5.2 Endothermic reaction temperatures and ΔH values for the thermal decomposition of copper(II) nitrate complexes from DTA curves

5.3 X-ray powder diffraction data (experimental)

5.4 X-ray powder diffraction data for the final thermolysis product of [Cu(NH₃)₄](NO₃)₂

5.5 α and Temperatures (K) values for the thermal deamination of tetraamminecopper(II) nitrate

5.6 Kinetic parameters for the deamination of [Cu(NH₃)₄](NO₃)₂ to Cu(NH₃)₂(NO₃)₂ using nonmechanistic equations from TG and DTA data

5.7 Kinetic parameters for the deamination of [Cu(NH₃)₄](NO₃)₂ to Cu(NH₃)₂(NO₃)₂ using mechanistic equations from TG and DTA data

6.1 Phenomenological data for the thermal decomposition of bis(ethylenediamine)copper(II) halide monohydrate complexes from TG curves
6.2 X-ray powder diffraction data (experimental)

6.3 Endothermic reaction temperatures and ΔH values for the thermal decomposition of copper(II) halide complexes from DTA curves

6.4 α and Temperature (K) values for the thermal decomposition of bis-(ethylenediamine)copper(II) chloride monohydrate

6.5 α and Temperature (K) values for the thermal decomposition of bis-(ethylenediamine)copper(II) bromide monohydrate

6.6 Kinetic parameters for the decomposition of [Cu(en)₂]Cl₂.H₂O using nonmechanistic equations from TG and DTA data

6.7 Kinetic parameters for the decomposition of [Cu(en)₂]Br₂.H₂O using nonmechanistic equations from TG and DTA data

6.8 Kinetic parameters for the decomposition of [Cu(en)₂]Cl₂.H₂O using mechanistic equations from TG and DTA data

6.9 Kinetic parameters for the decomposition of [Cu(en)₂]Br₂.H₂O using mechanistic equations from TG and DTA data

7.1 Phenomenological data for the thermal decomposition of diaquabis-(ethylenediamine)copper(II) oxalate

7.2 Endothermic reaction temperatures and ΔH values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate from DSC curves

7.3 X-ray powder diffraction data (experimental)

7.4 X-ray powder diffraction data for the final thermolysis product of [Cu(en)₂(H₂O)₂]C₂O₄

7.5 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate from TG

7.6 α and Temperature (K) values for the thermal decomposition of
diaquabis(ethylenediamine)copper(II) oxalate from DSC

7.7 Kinetic parameters for the decomposition of $[\text{Cu}(\text{en})_2(\text{H}_2\text{O})_2]\text{C}_2\text{O}_4$ using nonmechanistic equations from TG data

7.8 Kinetic parameters for the decomposition of $[\text{Cu}(\text{en})_2(\text{H}_2\text{O})_2]\text{C}_2\text{O}_4$ using nonmechanistic equations from DSC data

7.9 Kinetic parameters for the decomposition of $[\text{Cu}(\text{en})_2(\text{H}_2\text{O})_2]\text{C}_2\text{O}_4$ using mechanistic equations from TG data

7.10 Kinetic parameters for the decomposition of $[\text{Cu}(\text{en})_2(\text{H}_2\text{O})_2]\text{C}_2\text{O}_4$ using mechanistic equations from DSC data

8.1 Phenomenological data for the thermal decomposition of $[\text{Cu}(\text{en})_2(\text{H}_2\text{O})_2]\text{C}_2\text{O}_4$

8.2 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate

(Sample mass = 1.0760 mg.)

8.3 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate

(Sample mass = 2.4870 mg.)

8.4 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate

(Sample mass = 4.8850 mg.)

8.5 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate

(Sample mass = 7.4360 mg.)

8.6 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate

(Sample mass = 10 mg.)

8.7 α and Temperature (K) values for the thermal decomposition of
diaquabis(ethylenediamine)copper(II) oxalate
(Sample mass = 12.4940 mg.)

8.8 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate
(Sample mass = 15.2060 mg.)

8.9 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate
(Sample mass = 20.7430 mg.)

8.10 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate
(Heating rate = 1^0C min$^{-1}$)

8.11 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate
(Heating rate = 2^0C min$^{-1}$)

8.12 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate
(Heating rate = 5^0C min$^{-1}$)

8.13 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate
(Heating rate = 10^0C min$^{-1}$)

8.14 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate
(Heating rate = 15^0C min$^{-1}$)

8.15 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate.
(Heating rate = 20^0C min$^{-1}$)

8.16 α and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate
(Heating rate = 50^0C min$^{-1}$)
8.17 \(\alpha \) and Temperature (K) values for the thermal decomposition of diaquabis(ethylenediamine)copper(II) oxalate

\[
\text{(Heating rate } = 100^\circ C \text{ min}^{-1})
\]

8.18 Kinetic parameters using nonmechanistic equations for different sample masses for the dehydration reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.19 Kinetic parameters using nonmechanistic equations for different sample masses for the deamination reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.20 Kinetic parameters using nonmechanistic equations for different sample masses for the decomposition reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.21 Kinetic parameters using nonmechanistic equations for different heating rates for the dehydration reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.22 Kinetic parameters using nonmechanistic equations for different heating rates for the deamination reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.23 Kinetic parameters using nonmechanistic equations for different heating rates for the decomposition reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.24 The Fisher Constant (F) and the Coefficient of determination \((R^2) \) for the dehydration reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.25 The Fisher Constant (F) and the Coefficient of determination \((R^2) \) for the dehydration reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.26 The Fisher Constant (F) and the Coefficient of determination \((R^2) \) for the deamination reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.27 The Fisher Constant (F) and the Coefficient of determination \((R^2) \) for the deamination reaction of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2]C_2\text{O}_4\)

8.28 Curve-fit constants for the dehydration reaction using nonmechanistic equations

8.29 Curve-fit constants for the deamination reaction using nonmechanistic equations
8.30 Kinetic parameters using mechanistic equations for different sample masses for dehydration of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2\text{C}_2\text{O}_4]^-\)
(Heating rate = 10°C min⁻¹)

8.31 Kinetic parameters using mechanistic equations for different heating rates for dehydration of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2\text{C}_2\text{O}_4]^-\)
(Sample mass = 10 ± 0.1 mg.)

8.32 Kinetic parameters using mechanistic equations for different sample masses for deamination of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2\text{C}_2\text{O}_4]^-\)
(Heating rate = 10°C min⁻¹)

8.33 Kinetic parameters using mechanistic equations for different heating rates for deamination of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2\text{C}_2\text{O}_4]^-\)
(Sample mass = 10 ± 0.1 mg.)

8.34 Kinetic parameters using mechanistic equations for different sample masses for decomposition of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2\text{C}_2\text{O}_4]^-\)
(Heating rate = 10°C min⁻¹)

8.35 Kinetic parameters using mechanistic equations for different heating rates for decomposition of \([\text{Cu(en)}_2(\text{H}_2\text{O})_2\text{C}_2\text{O}_4]^-\)
(Sample mass = 10 ± 0.1 mg.)

8.36 Kinetic parameters for the dehydration reaction using Coats-Redfern and mechanism based equations

8.37 Kinetic parameters for the deamination reaction using Coats-Redfern and mechanism based equations

8.38 Kinetic parameters for the decomposition reaction using Coats-Redfern and mechanism based equations

8.39 The curve-fit constants for the dehydration and deamination reactions using the Mampel equation
LIST OF FIGURES

Figure No.

4.1.1 TG-DTG curves of $[\text{Cu(NH}_3)_4]\text{SO}_4\cdot\text{H}_2\text{O}$
4.1.2 DTA curve of $[\text{Cu(NH}_3)_4]\text{SO}_4\cdot\text{H}_2\text{O}$
4.2 X-ray powder diffractograms
4.3.1 TG-DTG curves of $[\text{Cu(en)}_3]\text{SO}_4$
4.3.2 DTA curve of $[\text{Cu(en)}_3]\text{SO}_4$
4.4 X-ray powder diffractograms

5.1.1 TG-DTG curves of $[\text{Cu(NH}_3)_4](\text{NO}_3)_2$; $\phi = 10^0\text{C min}^{-1}$
5.1.2 TG-DTG curves of $[\text{Cu(NH}_3)_4](\text{NO}_3)_2$; $\phi = 2^0\text{C min}^{-1}$
5.1.3 DTA curve of $[\text{Cu(NH}_3)_4](\text{NO}_3)_2$; $\phi = 2^0\text{C min}^{-1}$
5.2 X-ray powder diffractograms
5.3.1 TG-DTG curves of $[\text{Cu(en)}_2](\text{NO}_3)_2$; $\phi = 0.5^0\text{C min}^{-1}$
5.3.2 DTA curve of $[\text{Cu(en)}_2](\text{NO}_3)_2$; $\phi = 0.5^0\text{C min}^{-1}$
5.3.3 TG-DTG curves of $[\text{Cu(en)}_2](\text{NO}_3)_2$; $\phi = 2^0\text{C min}^{-1}$
5.3.4 The expanded portion of the TG-DTG curves of $[\text{Cu(en)}_2](\text{NO}_3)_2$; $\phi = 0.5^0\text{C min}^{-1}$

6.1.1 TG-DTG curves of $[\text{Cu(en)}_2]\text{Cl}_2\cdot\text{H}_2\text{O}$
6.1.2 DTA curve of $[\text{Cu(en)}_2]\text{Cl}_2\cdot\text{H}_2\text{O}$
6.2 X-ray powder diffractograms
6.3.1 TG-DTG curves of $[\text{Cu(en)}_2]\text{Br}_2\cdot\text{H}_2\text{O}$
6.3.2 DTA curve of $[\text{Cu(en)}_2]\text{Br}_2\cdot\text{H}_2\text{O}$
6.4 Microphotographs of residue of $[\text{Cu(en)}_2]\text{Br}_2\cdot\text{H}_2\text{O}$

7.1.1 TG-DTG curves of $[\text{Cu(en)}_2(\text{H}_2\text{O})_2]\text{C}_2\text{O}_4$
7.1.2 DSC curve of $[\text{Cu(en)}_2(\text{H}_2\text{O})_2]\text{C}_2\text{O}_4$
7.2 X-ray powder diffractograms
8.1 Plots of the fitted curves (E versus sample mass) for the dehydration stage using nonmechanistic equations
8.2 Plots of the fitted curves (log A versus sample mass) for the dehydration stage using nonmechanistic equations
8.3 Plots of the fitted curves (E versus heating rate) for the dehydration stage using nonmechanistic equations
8.4 Plots of the fitted curves (log A versus heating rate) for the dehydration stage using nonmechanistic equations
8.5 Plots of the fitted curves (E versus sample mass) for the deamination stage using nonmechanistic equations
8.6 Plots of the fitted curves (log A versus sample mass) for the deamination stage using nonmechanistic equations
8.7 Plots of the fitted curves (E versus heating rate) for the deamination stage using nonmechanistic equations
8.8 Plots of the fitted curves (log A versus heating rate) for the deamination stage using nonmechanistic equations
8.9 Plots of the fitted curves (E or log A versus sample mass or heating rate for the dehydration stage using mechanistic equation
8.10 Plots of the fitted curves (E or log A versus sample mass or heating rate for the deamination stage using mechanistic equation