LIST OF FIGURES

CHAPTER I

1.1 Alignment of magnetic moments in ferromagnetism
1.2 Alignment of magnetic moments in Antiferromagnetism
1.3 Alignment of magnetic moments in ferrimagnetism

CHAPTER II

2.2 Structure of spinel

CHAPTER IV

4.6.2 a) Variation of density with conc. of Mn for various sintering temperatures prepared by thermal decomposition
4.6.2 b) Variation of density with conc. of Mn for various Sintering temperatures prepared by microwave induced decomposition
4.6.3 a) IR spectra of Mn (x) Zn (1-x) Fe₂O₄ ferrite where x=0.40/0.50/0.60/0.65 prepared by thermal decomposition
4.6.3 b) IR spectra of Mn (x) Zn (1-x) Fe₂O₄ ferrite where x=0.40/0.50/0.60/0.63/0.65/0.67/0.70 prepared by microwave decomposition
4.6.4.1a) Typical x-ray diffraction pattern obtained for Mn (x) Zn (1-x) Fe₂O₄ ferrite prepared by thermal decomposition
4.6.4.1 b) X-ray powder diffraction pattern for Mn (x) Zn (1-x) Fe₂O₄
ferrite prepared by microwave decomposition method.

4.6.4.2: Variation of Lattice Constant with Conc. of Zn in
Mn \((x) \) Zn \((1-x) \) Fe₂O₄

CHAPTER V

5.3(a): JEOL Model 840(SEM)
5.3(b): Line diagram of typical Scanning Electron Microscope
5.4(a): Philips model CM200 Transmission electron Microscope
5.4(b): Diffraction pattern and image of specimen obtained using TEM
5.4(a): SOLVER PRO SPM.
5.4(b): Optical head of SPM

5.6.1: SEM micrograph and particle size hystogram of powdered sample Mn\(_{0.65}\)Zn\(_{0.35}\)Fe\(_2\)O\(_4\) prepared by thermal decomposition method.

5.6.2a: SEM micrograph and particle size hystogram of sample
Mn\(_{0.40}\)Zn\(_{0.60}\)Fe\(_2\)O\(_4\) after decomposing by microwave method

5.6.2: SEM micrograph and particle size hystogram of sample obtained after decomposing by microwave method

(b) Mn\(_{0.50}\)Zn\(_{0.50}\)Fe\(_2\)O\(_4\) (c) Mn\(_{0.60}\)Zn\(_{0.40}\)Fe\(_2\)O\(_4\)

(d) Mn\(_{0.63}\)Zn\(_{0.37}\)Fe\(_2\)O\(_4\)

5.6.2e: SEM micrograph and particle size hystogram of sample
Mn\(_{0.65}\)Zn\(_{0.35}\)Fe\(_2\)O\(_4\) obtained after decomposing by microwave method

5.6.3: TEM micrograph and particle size hystogram of sample
obtained after decomposing by thermal method
(a) Mn$_{0.60}$Zn$_{0.40}$Fe$_2$O$_4$ (b) Mn$_{0.65}$Zn$_{0.35}$Fe$_2$O$_4$

5.6.4: TEM micrograph and particle size histogram of sample obtained after decomposing by microwave method
(a) Mn$_{0.60}$Zn$_{0.40}$Fe$_2$O$_4$ (b) Mn$_{0.65}$Zn$_{0.35}$Fe$_2$O$_4$

5.6.5: SPM micrograph and particle size histogram of sample Mn$_{0.60}$Zn$_{0.40}$Fe$_2$O$_4$ obtained after decomposing by microwave method.

5.6.6: SPM micrograph and particle size histogram of sample Mn$_{0.65}$Zn$_{0.35}$Fe$_2$O$_4$ obtained after decomposing by microwave method.

CHAPTER VI

6.1 Magnetic field lines in a bar magnet

6.2.2 Domain wall

6.2.3 Magnetization (M) versus magnetic field strength (H) where Ms is the saturation magnetization, (Mr) is the remanence magnetization and Hc is the coercivity.

6.2.5.1 Coercivity as a function of particle sized (D$_{sp}$ is the superparamagnetic size and D$_s$ is the single domain particle size)

6.2.5.2 Domain structures observed in magnetic particles:
a) superparamagnetic b) single domain particle
b) multi-domain particle.
6.6.1.1(a): Variation of Saturation magnetization with conc. of Mn for various sintering temperatures for the samples prepared by thermal decomposition.

6.6.1.1(b): Variation of Saturation magnetization with conc. of Mn for various sintering temperatures for the samples prepared by microwave induced decomposition.

6.6.1.2: Shows magnetic hysteresis curves obtained on VSM at room temperature for as prepared samples (A) $\text{Mn}_{0.65}\text{Zn}_{0.35}\text{Fe}_2\text{O}_4$

(B) $\text{Mn}_{0.67}\text{Zn}_{0.33}\text{Fe}_2\text{O}_4$.

6.6.1.2: Shows magnetic hysteresis curves obtained on VSM at room temperature for as prepared samples (C) $\text{Mn}_{0.65}\text{Zn}_{0.35}\text{Fe}_2\text{O}_4$

and (D) $\text{Mn}_{0.67}\text{Zn}_{0.33}\text{Fe}_2\text{O}_4$ sintered at 1350°C.

6.6.1.3(a): Variation of Hysteresis loss with conc. of Mn for various sintering temperatures for the samples prepared by thermal decomposition.

6.6.1.3(b): Variation of Hysteresis loss with conc. of Mn for various sintering temperatures for the samples prepared by microwave induced decomposition.

6.6.1.4: (a) Temperature dependence of magnetization (b) Field dependent magnetization for as prepared sample $\text{Mn}_{0.70}\text{Zn}_{0.30}\text{Fe}_2\text{O}_4$ prepared by Microwave
decomposition.

6.6.2.1: Variation of initial permeability with temperature for sample $\text{Mn}_x\text{Zn}_{1-x}\text{Fe}_2\text{O}_4$ sintered at (a) 950 °C (b) 1050 °C (c) 1150 °C (d) 1250 °C and (e) 1350 °C.

6.6.2.2: (a) The variation of initial permeability with temperature for the sample $\text{Mn}_{0.45}\text{Zn}_{0.55}\text{Fe}_2\text{O}_4$ sintered at different temperatures.

(b) Variation of maximum value of initial permeability with sintering temperature for $\text{Mn}_{0.45}\text{Zn}_{0.55}\text{Fe}_2\text{O}_4$.

6.6.2.3: SEM Photographs of $\text{Mn}_{0.45}\text{Zn}_{0.55}\text{Fe}_2\text{O}_4$ sintered in nitrogen atmosphere for 3 hours at (a) 950°C (b) 1050°C, (c) 1150°C, (d) 1250°C (e) 1350°C.

6.6.2.3: TEM Photograph of sample $\text{Mn}_{0.45}\text{Zn}_{0.55}\text{Fe}_2\text{O}_4$ sintered at 1050°C.

6.6.2.4: Variation of relative loss factor with frequency (a) samples $\text{Mn}_x\text{Zn}_{1-x}\text{Fe}_2\text{O}_4$ sintered at 1150 °C (b) Sample $\text{Mn}_{0.45}\text{Zn}_{0.55}\text{Fe}_2\text{O}_4$ sintered at 1050 °C at different temperatures.

6.6.3.1: Normalized susceptibility (ratio $\chi_T/\chi_{(300)}$) as a function of temperature for $\text{Mn}_x\text{Zn}_{1-x}\text{Fe}_2\text{O}_4$

6.6.3.2: Variation of Curie temperature with concentration of Zn in $\text{Mn}_{(x)}\text{Zn}_{1-x}\text{Fe}_2\text{O}_4$.

6.6.3.3: Variation of Specific magnetization with temperature for the samples (a) $\text{Mn}_{0.40}\text{Zn}_{0.60}\text{Fe}_2\text{O}_4$ (b) $\text{Mn}_{0.45}\text{Zn}_{0.55}\text{Fe}_2\text{O}_4$
and \(\text{Mn}_{0.55} \text{Zn}_{0.45} \text{Fe}_2\text{O}_4 \).

6.6.3.4: Variation of Specific magnetization with temperature for the samples (a) \(\text{Mn}_{0.40}\text{Zn}_{0.60}\text{Fe}_2\text{O}_4 \) (b) \(\text{Mn}_{0.50}\text{Zn}_{0.50}\text{Fe}_2\text{O}_4 \)
(c) \(\text{Mn}_{0.60}\text{Zn}_{0.40}\text{Fe}_2\text{O}_4 \) (d) \(\text{Mn}_{0.63}\text{Zn}_{0.37}\text{Fe}_2\text{O}_4 \) .

6.6.3.4: Variation of Specific magnetization with temperature for the samples
(e) \(\text{Mn}_{0.65}\text{Zn}_{0.35}\text{Fe}_2\text{O}_4 \) (f) \(\text{Mn}_{0.67}\text{Zn}_{0.33}\text{Fe}_2\text{O}_4 \)
and
(g) \(\text{Mn}_{0.70}\text{Zn}_{0.30}\text{Fe}_2\text{O}_4 \) .

6.6.3.5: Variation of Specific magnetization with temperature for the samples sintered at 1350°C (a) \(\text{Mn}_{0.55}\text{Zn}_{0.45}\text{Fe}_2\text{O}_4 \) (b) \(\text{Mn}_{0.60}\text{Zn}_{0.40}\text{Fe}_2\text{O}_4 \) and
(c) \(\text{Mn}_{0.65}\text{Zn}_{0.35}\text{Fe}_2\text{O}_4 \) .

CHAPTER VII

7.5.1.1: Variation of resistivity for the samples of different compositions, sintered at (a) 1050°C (b) 1150°C .

7.5.1.1: Variation of resistivity for the samples of different compositions, sintered at (c) 1250°C & (d) 1350°C .

7.5.1.2: Variation of resistivity for the sample \(\text{Mn}_{0.6}\text{Zn}_{0.4}\text{Fe}_2\text{O}_4 \) sintered at various temperatures.

7.5.1.3: SEM Photographs of \(\text{Mn}_{0.60}\text{Zn}_{0.40}\text{Fe}_2\text{O}_4 \) sintered in nitrogen atmosphere for 3 hours at (a) 1050°C (b) 1150°C
(c) 1250°C & (d) 1350°C.
7.5.2.1(a): Variation of dielectric constant for the samples of different compositions, sintered at 950°C.

7.5.2.1: Variation of dielectric constant for the samples of different compositions, sintered at (b) 1050°C (c) 1150°C.

7.5.2.2: Variation of dielectric constant for the samples sintered at different temperatures (a) Mn_{0.65}Zn_{0.35}Fe_2O_4 and (b) Mn_{0.70}Zn_{0.30}Fe_2O_4.

7.5.2.3: Variation of dielectric constant with temperature for the samples of different compositions, sintered at (a) 1150°C (b) 1250°C.

7.5.2.4: Variation of loss factor for the samples (a) Mn_{0.65}Zn_{0.35}Fe_2O_4 and (b) Mn_{0.70}Zn_{0.30}Fe_2O_4.
LIST OF TABLES

CHAPTER I

1.1: Materials classified by their magnetic properties.

CHAPTER III

3 (a): Amount of metal salts used in the synthesis of Mn-Zn mixed ferrites by thermal decomposition method . Composition of (Mn$^{+2}$ + Zn$^{+2}$) : Fe$^{2+}$ is 1: 2.

3 (b): Amount of metal salts used in the synthesis of Mn-Zn mixed ferrites by microwave decomposition method . Composition of (Mn$^{+2}$ + Zn$^{+2}$) : Fe$^{2+}$ is 1: 2.

CHAPTER IV

4.6.1.1: Theoretical and Experimental % yield of the oxide material after decomposition (a) thermal decomposition (b) microwave decomposition .

4.6.1.2(a): EDS results of Sample Mn$_{0.4}$Zn$_{0.6}$Fe$_2$O$_4$ prepared by thermal decomposition.

4.6.1.2(b): EDS results of Sample Mn$_{0.50}$Zn$_{0.40}$Fe$_2$O$_4$.

4.6.1.2(c): EDS results of Sample Mn$_{0.67}$Zn$_{0.33}$Fe$_2$O$_4$ prepared by microwave decomposition.

4.6.4.1: Structural parameters (lattice constant 'a') and particle size of Mn (x) Zn (1-x) Fe$_2$O$_4$ obtained from XRD pattern.
CHAPTER V

5.6.1: Particle size for (a) samples prepared by thermal decomposition (b) samples prepared by microwave decomposition.

CHAPTER VI

6.6.1: Magnetic properties of $\text{Mn}_{0.65}\text{Zn}_{0.35}\text{Fe}_2\text{O}_4$ and $\text{Mn}_{0.67}\text{Zn}_{0.33}\text{Fe}_2\text{O}_4$ unsintered and sintered at 1350 °C.

6.6.3.1: Experimentally determined curie temperatures for samples $\text{Mn}_x\text{Zn}_{1-x}\text{Fe}_2\text{O}_4$ prepared by thermal decomposition method.

6.6.3.2: Curie temperatures for samples $\text{Mn}_x\text{Zn}_{1-x}\text{Fe}_2\text{O}_4$ prepared by microwave decomposition method.