CONTENTS

CHAPTER I

1. **INTRODUCTION**
 1.1 General Introduction 1
 1.2 Scope and organization of thesis 9

CHAPTER II

2. **LITERATURE SURVEY**
 2.1 The Iron Oxides 13
 2.2 Structure of Spinel 18
 2.2.1 Normal ferrites 19
 2.2.2 Inverse ferrites 19
 2.2.3 Mixed ferrites 20
 2.3 Theoretical understanding 24
 2.4 Properties of ferrites 28
 2.4.1 Magnetic properties 29
 2.4.1.1 Saturation magnetization 29
 2.4.1.2 Hysteresis 30
 2.4.1.3 Permeability 30
 2.4.2 Electrical properties 31
 2.4.2.1 Resistivity 32
 2.4.2.2 Dielectric behavior 32
 2.5 Applications of ferrites 34
CHAPTER III

3. PREPARATION OF MATERIALS

3.1 Introduction 40
3.2 Preparation of magnetic materials 41
3.2.1 Ceramic method 41
3.2.2 Hydrothermal 41
3.2.3 Co precipitation 42
3.2.4 Sol-gel 43
3.2.5 Precursor 43
3.2.6 Vapour Phase 44
3.2.7 Chimie – douse 44
3.2.8 Plasma Synthesis 45
3.2.9 Reverse micelle technique 46
3.3 CTAB 47
3.4 Synthesis of Mn\(_{(x)}\)Zn\(_{(1-x)}\)Fe\(_2\)O\(_4\) mixed ferrite 48

in present study

CHAPTER IV

4. ANALYTICAL TECHNIQUE AND CHARACTERIZATION 54

4.1 Chemical analysis 55
4.1.1 Characterization by percentage yield method 55
4.1.2 Experimental 55
4.1.3 Energy Dispersive X-ray Analysis (EDAX) 56
4.1.4 Experimental 57
4.2 Density measurements 57
4.3 Infra Red Spectroscopy (IR) 57
 4.3.1 Experimental 61

4.4 X-Ray diffraction spectroscopy 61
 4.4.1 Line broadening analysis for crystallite dimension 64
 4.4.2 Experimental 64

4.5 Results and discussion 65
 4.5.1 Chemical analysis 65
 4.5.1.1 Method of determining % yield 65
 4.5.1.2 EDS Data 67
 4.5.2 Density measurements 68
 4.5.3 Infra red analysis 72
 4.5.4 X-ray diffraction analysis 75

CHAPTER V

5. INSTRUMENTAL TECHNIQUES AND CHARACTERIZATION 81

 5.1 Introduction 81
 5.2 Powder X-ray diffraction 83
 5.3 Scanning Electron microscope 83
CHAPTER VI

6. MAGNETIC PROPERTIES

6.1 Introduction

6.2.1 Magnetization terms
6.2.2 Magnetic domains
6.2.3 Hysteresis
6.2.4 Magnetic anisotropy
6.2.5 Magnetic properties of small particles
6.2.6 Magnetostriction
6.2.7 Low field and low temperature magnetization measurements using SQUID

6.3 Initial permeability

6.3.1 Models of permeability
6.3.2 Dependence of Initial permeability

6.4 A.C. Susceptibility

6.5 Experimental techniques

6.5.1 Saturation magnetization and hysteresis loss
6.5.2 Initial permeability
6.5.3 A.C. Susceptibility

6.6 Results and discussion

6.6.1 Saturation magnetization
6.6.2 Permeability and loss factor
CHAPTER VII

7. ELECTRICAL PROPERTIES

7.1 Introduction 159

7.2 Resistivity 160
 7.2.1 Hopping model 163
 7.2.2 Small polaron model 164
 7.2.3 Phonon induced tunneling 165

7.3 Experimental technique 165

7.4 Dielectric constant 165
 7.4.1 Experimental technique 167

7.5. Results and discussion 168
 7.5.1 Resistivity 168
 7.5.2 Dielectric Constant 176
 7.5.2.1 Frequency dependence of dielectric constant 176
 7.5.2.2 Temperature dependence of dielectric constant 183
 7.5.2.3 Dielectric loss factor 186

CHAPTER VIII

8. CONCLUSIONS

8.1 Summary 191

8.2 scope for future work 195