GENERAL REMARKS

1) 1H NMR and 13C NMR spectra were recorded on a Bruker spectrometer operating at 300 and 75 MHz for 1H and 13C respectively using either CDCl$_3$ or DMSO-d_6 as the solvent. Chemical shifts, δ, were reported in parts per million (ppm) relative to solvent resonance: CDCl$_3$, δ 7.26 (1H NMR), and 77.3 (13C NMR); DMSO-d_6, δ 2.50 (1H NMR), and 40.2 (13C NMR). Multiplicities were indicated by s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Coupling constants, J, were reported in Hz.

2) IR spectra were recorded on Shimadzu IR-408, a Shimadzu FTIR instrument. The spectra were recorded either a thin film in or KBr pellets and expressed in wave number (cm$^{-1}$).

3) Elemental Analysis was performed on a Hosli CH-Analyzer and are within ± 0.3 of the theoretical percentage.

4) Mass spectra were recorded on a Shimadzu GC-MS QP 2010A mass spectrometer with an ionization potential of 70 eV.

5) UV/VIS spectra were recorded using a Shimadzu UV/VIS scanning spectrophotometer UV 2101 PC; concentration: 0.01 mg/ml.

6) Excitation and emission spectra were recorded using on a Shimadzu RF- 5001 PC spectrofluorometer (150-w Xe lamp, 6 selectable slits: 1.5, 3, 5, 10, 15, 20 nm, R452-01 photomultiplier; monochromator; ion-blazed halographicconcave grating F/2.5); concentration: 0.01 mg/ml.

7) Determination of Quantum yields: emission signals were set in relation to the known signal of quinine sulfate at pH 1.
8) Melting Points were determined using a Gallenkamp Melting Point Apparatus, Mod. MFB-595 in open capillary tubes and measured in °C.

9) All reactions were monitored by Thin Layer Chromatography on 0.2 mm silica gel F-254 (Merck) plates using UV light (254 and 366 nm) for detection.

10) After work up, solvents were removed under reduced pressure with Heidolph or Büchi Rotary Evaporator and re-used by standard purification methods.

11) All reagents were purchased from sd Fine, Merck, Acros, Aldrich, Fluka, Loba and Thomas & Becker, and were used as it is and solvents were dried according to the literature procedures.

12) Hazardous chemicals and residues were disposal by using standard procedures.

13) The compounds were purified using flash column chromatography.