TABLE OF CONTENTS

LIST OF FIGURES..I
LIST OF TABLES...VII
ABBREVIATIONS..X
ABSTRACT..1
CHAPTER 1..4
INTRODUCTION..4
CHAPTER 2..15
REVIEW OF LITERATURE...15
2.1 Origin and taxonomy of *J. curcas*..16
2.2 Morphological features of *J. curcas*...16
2.3 Seed oil biosynthesis...16
2.3.1 Biosynthesis and accumulation of oil in *J. curcas* seeds...18
2.3.2 Molecular basis of oil biosynthesis and accumulation in *J. curcas*.........................19
2.3.3 Transcriptional regulation of oil biosynthesis and accumulation..............................20
2.3.4 Effect of altitudinal variation on oil biosynthesis and accumulation.........................22
2.4 Metabolic engineering for modification of fatty acid composition and oil content....23
2.5 Reduction in overall yield and oil content in response to biotic stresses....................26
2.5.1 *Jatropha curcas* mosaic disease..27
2.5.2 Molecular basis of mosaic disease response in different plant species.................28
2.6 NBS-LRR genes ..29
2.7 Transcription factors related to defense response..31
2.8 Disease resistance in *J. curcas* ..32
CHAPTER 3..35
MATERIALS AND METHODS...35
3.1 Plant material..36
3.2 Oil extraction and content estimation..37
 3.2.1 Selection of high versus low oil content genotype..................................37
3.3 Primer designing..37
3.4 RNA extraction and cDNA synthesis..38
3.5 DNA isolation and detection of virus..38
3.6 Data collection...39
3.7 Expression analysis of FA and TAG biosynthesis pathway genes through reverse transcription-quantitative real-time PCR (RT-qPCR)..39
 3.7.1 Statistical analysis...40
 3.7.2 In-silico promoter analysis...40
 3.7.3 Cloning of promoter region...44
3.8 In-silico identification of transcription factors (TFs) controlling oil biosynthesis.....44
 3.8.1 Expression analysis of transcription factor genes through reverse transcription-quantitative real-time PCR (RT-qPCR)...46
3.9. Illumina NextSeq 2 x 150 PE library preparation...48
 3.9.1 Data generation and mapping of reads to genome.................................49
 3.9.2 Differential gene expression analysis...49
 3.9.3 Heat map analysis..49
 3.9.4 Gene ontology analysis..50
 3.9.5 Pathway analysis..50
 3.9.6 SNP identification...51
 3.9.7 Co-expression network analysis..51
 3.9.8 RT-qPCR based experimental validation...52
3.10 Identification of Pfam domains/families associated with NBS-LRR genes and transcription factors related to disease resistance..55
 3.10.1 Identification of NBS-LRR genes and defense response associated transcription factors...56
 3.10.2 Location of NBS-LRR genes in sequence contigs..................................57
 3.10.3 Identification of common and unique NBS-LRR genes and transcription factors in Jatropha and castor bean genomes..58
3.10.4 Expression analysis of identified NBS-LRR genes and TFs..............58
3.10.5 Identification of CNLs and TNLs in predicted NBS-LRR genes...........58
3.10.6 Retrieval of disease resistance gene sequences of Jatropha..............59
3.10.7 Protein characterization, motif distribution and domain prediction.....59

CHAPTER 4 ...60

RESULTS ...60
4.1 Oil extraction and oil content analysis..62
4.2 Expression analysis of FA and TAG biosynthetic pathway genes at different developmental stages of embryo and endosperm.................................62
4.3 Differential expression pattern in high versus low oil content genotypes vis-a-vis altitude variations...67
4.4 Relative transcript abundance in endosperm and embryo......................67
4.5 Statistical analysis..72
4.6 In-silico analysis of promoter region..75
4.7 Cloning of promoter region of SAD gene from high and low oil content genotype...79
4.8 Identification of TFs regulating oil accumulation.................................79
4.9 In-silico transcript abundance of TFs regulating oil accumulation..........80
4.10 Expression analysis of TFs regulating oil accumulation through RT-qPCR...80
4.11 Identification of virus..82
4.12 Reduction in fruits size, seed yield and oil content in response to virus infection...83
4.13 Transcriptome sequencing and data generation....................................84
4.14 Differential gene expression analysis..84
4.15 Gene ontology analysis based functional classification of JH versus JV transcript..84
4.16 Pathway analysis and identification of pathways upregulated in response to viral infection (JV transcriptome)...89
4.16.1 Oxidative phosphorylation...89
4.16.2 Endocytosis...91
4.16.3 Metabolism of amino acids and vitamins ..91
4.16.4 Fatty acid and lipid catabolism..91
4.16.5 Amino sugar and nucleotide sugar metabolism..............................91
4.16.6 Terpenoid biosynthesis..92
4.16.7 Signal transduction of hormones..92
4.17 Identification of pathways downregulated in response to viral infection.......92
 4.17.1 Photosynthesis..92
 4.17.2 Anthocyanin biosynthesis...94
 4.17.3 Plant-pathogen interaction...94
 4.17.4 Calcium signaling pathway...94
4.18 Identification of SNPs..97
4.19 Co-expression network analysis...97
4.20 RT-qPCR based validation of informative transcripts...............................98
4.21 Identification of NBS-LRR genes and defense response associated transcription factors in J. curcas...99
4.22 Location of NBS-LRR genes in genome sequence contigs....................101
4.23 Transcript abundance of NBS-LRR genes and transcription factors associated with disease resistance..102
4.24 Identification of TNLs and CNLs in identified NBS-LRR genes...............103
4.25 Distribution of identified transcription factors into families......................105
4.26 Identification of common and unique NBS-LRR genes and transcription factors between Jatropha and castor bean genomes.................................105
4.27 Organization of disease resistance genes in castor bean and Jatropha genome.....109
4.28 Data availability..110
CHAPTER 5...111
DISCUSSION...111
5.1 Variation in oil content among high and low oil content genotypes of J. curcas..112
5.2 Identification of genetic factors responsible for high oil content and key genes associated with oil biosynthesis and accumulation in J. curcas.................................112
 5.2.1 Molecular basis of oil accumulation vis-à-vis altitudinal variations......115
 5.2.2 Molecular basis of high oil accumulation in endosperm as compared to embryo in J. curcas...115
5.3 Transcriptional regulation of oil biosynthesis and accumulation in J. curcas.....116
 5.3.1 Regulatory elements in the promoter regions of oil biosynthesis genes...116
5.3.2 Transcription factors regulating oil biosynthesis and accumulation in *J. curcas*………………………………………………………………………………………..117

5.4 Understanding molecular mechanisms associated with mosaic disease in *J. curcas*………………………………………………………………………………………..118

5.4.1 Reduction in seed yield and oil content due to mosaic disease in *J. curcas*………………………………………………………………………………………..118

5.4.2 Gene ontology based functional annotation……………………………..119

5.4.3 Enhanced energy metabolism during viral infection in *J. curcas*……..119

5.4.4 Endocytosis is activated in response to viral infection in *J. curcas*……119

5.4.5 Metabolism of amino acids and vitamins is induced in response to viral infection………………………………………………………………………………120

5.4.6 Catabolism of fatty acids and lipids is associated to sugar biosynthesis in response to viral infection…………………………………………………………120

5.4.7 Terpenoids function as plant growth regulators during viral infection….121

5.4.8 Hormones signaling is enhanced during virus infection…………………..121

5.4.9 Photosynthesis is affected during virus infection……………………………..122

5.4.10 Degradation of anthocyanin in viral infection……………………………..124

5.4.11 Repression of defense mechanisms during viral infection…………………..124

5.4.12 Host factors contributing towards replication and multiplication of virus.125

5.4.13 Identification of transcription factors regulating genes associated with biological processes………………………………………………………………..126

5.4.14 Identification of SNPs in JV and JH transcriptomes of *J. curcas*……..126

5.4.15 Identification of genes co-expressed with genes involved in ‘Plant hormone signal transduction’ and ‘Plant-pathogen interaction’……………………………..127

5.4.16 Experimental validation of the transcriptome data………………………..127

5.5 Identification of disease resistance (NBS-LRR) genes in *J. curcas*………..128

5.5.1 Characterization of identified NBS-LRR genes into TNLs and CNLs…..129

5.5.2 Identification of transcription factors related to defense response in *J. curcas*………………………………………………………………………………129

5.5.3 Distribution of defense response related transcription factors into families130
5.5.4 Comparative analysis between Jatropha and castor bean identifies potential NBS-LRR genes and transcription factors related to defense response………130

5.5.5 Comparative analysis between Jatropha and castor bean revealed the concept of duplication and synteny………………………………………………………131

5.5.6 Characterization of NBS-LRR genes predicted by Sato et al. [13] in J. curcas……………………………………………………………………….132

SUMMARY………………………………………………………………………133

FUTURE PROSPECTS……………………………………………………..136

APPENDIX……………………………………………………………………138

REFERENCES……………………………………………………………..174

PUBLICATIONS…………………………………………………………214