Chapter 1 INTRODUCTION 1-21

1.1 INTRODUCTION 1
1.2 PROJECT MANAGEMENT 2
 1.2.1 Planning 4
 1.2.2 Scheduling 4
1.3 CONCURRENT ENGINEERING 6
 1.3.1 Activity dependencies 7
 1.3.2 Precedence relations 9
 1.3.3 Resource management 10
 1.3.4 Resource-constrained project scheduling 12
 1.3.5 Resource constraints 13
 1.3.6 Precedence constraints 15
1.4 MULTI-AGENT SYSTEM 16
1.5 MOTIVATION 17
1.6 OBJECTIVES 19
1.7 THESIS ORGANISATION 19
 1.7.1 Review of existing project scheduling methods 20
 1.7.2 Analysis and modelling 20
 1.7.3 Prototype design and development 21
Chapter 5

5.5.3 Resource modelling and allocation 128
5.5.4 Solution strategies 128
5.5.5 Game model 129

5.6 ACTIVITY AND RESOURCE STATE MAPS 130
5.7 MULTI-AGENT COORDINATION ARCHITECTURE 133
5.8 DISCUSSION 138

Chapter 6

DEVELOPMENT OF ALGORITHMS 140-162

6.1. OVERVIEW 140
6.2 IDENTIFICATION OF TASK DEPENDENCY 143
6.3 IDENTIFICATION OF RESOURCE DEPENDENCY 145
6.4 TASK OVERLAPPING 146
6.4.1 Modes of task overlapping 148
6.4.2 Overlapping level identification 150
6.5 RESOURCE ALLOCATION 152
6.5.1 Utility value 153
6.5.2 Resource allocation using \(R_T \) and \(R_J \) priority rules 154
6.5.3 Resource allocation using LRTP and SRTP priority rules 155
6.5.4 Resource allocation using game 156
6.5.5 Overlapped project makespan 157
6.6 PSEUDO CODE FOR PROJECT SCHEDULING 158
6.7 DISCUSSION 162

Chapter 7

DESIGN AND DEVELOPMENT OF PROTOTYPE 163-180

7.1 INTRODUCTION 163
7.2 PROTOTYPE ARCHITECTURE 164
7.3 AGENTS IN THE SYSTEM 170
7.3.1 User interface agent 170
7.3.2 Task agent 171
7.3.3 Resource agent 173
7.3.4 Constraint management agent 174
Chapter 8
TESTING AND RESULTS

<table>
<thead>
<tr>
<th>8.1 INTRODUCTION</th>
<th>181</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 OVERLAPPED PROJECT SCHEDULING</td>
<td>182</td>
</tr>
<tr>
<td>8.2.1 Scheduling with optimum priority rule</td>
<td>184</td>
</tr>
<tr>
<td>8.2.2 Results and discussion</td>
<td>185</td>
</tr>
<tr>
<td>8.2.3 Scheduling with selected priority rule</td>
<td>188</td>
</tr>
<tr>
<td>8.2.4 Scheduling with allocation game</td>
<td>191</td>
</tr>
<tr>
<td>8.3 CASE STUDY</td>
<td>194</td>
</tr>
<tr>
<td>8.3.1 Introduction</td>
<td>194</td>
</tr>
<tr>
<td>8.3.2 Modelling</td>
<td>195</td>
</tr>
<tr>
<td>8.3.3 Design and development</td>
<td>196</td>
</tr>
<tr>
<td>8.3.4 Implementation</td>
<td>203</td>
</tr>
<tr>
<td>8.3.5 Results and discussion</td>
<td>205</td>
</tr>
</tbody>
</table>

Chapter 9
CONCLUSIONS AND FURTHER RESEARCH

<table>
<thead>
<tr>
<th>9.1 CONCLUSIONS</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2 ACHIEVEMENTS</td>
<td>208</td>
</tr>
<tr>
<td>9.2.1 Concepts to identity task overlapping</td>
<td>209</td>
</tr>
<tr>
<td>9.2.2 Resource allocation</td>
<td>210</td>
</tr>
<tr>
<td>9.3 LIMITATIONS</td>
<td>210</td>
</tr>
<tr>
<td>9.4 RECOMMENDATIONS FOR FURTHER RESEARCH</td>
<td>211</td>
</tr>
</tbody>
</table>
REFERENCES

APPENDICES

A. USER INTERFACE SCREENS 229

B. CASE STUDY 235
 B.1 Kidney transplantation surgery
 B.2 Case study screens 240