List of Figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Relationship between chromium and nickel contents for five basic types of stainless steel (Pickering, 1976)</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic illustration showing GTAW process: (a) overall welding process; (b) enlarge view of welding area (Kou, 2003)</td>
<td>14</td>
</tr>
<tr>
<td>1.3</td>
<td>Fe-Cr-Ni Pseudobinary phase diagram, 70 % constant iron section (Lippold and Kotecki, 2005). (Solidification modes are A= austenite solidification, AF= primary austenite solidification, FA= primary ferrite solidification, F= ferrite solidification)</td>
<td>15</td>
</tr>
<tr>
<td>1.4 (a)</td>
<td>Various ferrite morphologies shown schematically (Raj et al., 2012)</td>
<td>17</td>
</tr>
<tr>
<td>1.4 (b)</td>
<td>Weld metal microstructures resulting from different modes of solidification: (i) Fully austenitic (Type A solidification); (ii) Eutectic (Type AF solidification); (iii) Vermicular ferrite morphology (Type FA solidification); (iv) Lathy ferrite morphology (Type FA solidification); (v) Widmanstatten austenitic (Type F solidification). (Lippold and Kotecki, 2005)</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>Schematic diagrams showing the depletion of chromium from the austenite near grain boundaries due to chromium carbide precipitation (McGuire, 2008)</td>
<td>25</td>
</tr>
<tr>
<td>1.6</td>
<td>Time-Temperature sensitization curves (McGuire, 2008)</td>
<td>26</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic representation of low temperature sensitization (LTS). Paths A and B do not cause sensitization. However path C causes severe sensitization. The shaded region is the normal isothermal time-temperature sensitization (TTS) zone (Povich, 1978)</td>
<td>46</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic illustration showing penetration mechanism and related competing processes (Strehblow, 1984)</td>
<td>49</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic illustration showing adsorption mechanism and related competing processes (Strehblow, 1984)</td>
<td>50</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic illustration showing film breakdown mechanism and related competing processes (Strehblow, 1984)</td>
<td>51</td>
</tr>
</tbody>
</table>
3.1 Dimensions of single V-groove design used in the present work 63
3.2 Schematic illustration showing the sampling plan for the extraction of specimens from different locations of the welded plates 70
3.3 Schematic illustration showing the shape and size of the transverse tensile specimen 71
3.4 Schematic illustration showing the details of the (a) Charpy V-notch impact specimen (b) Notch (enlarge view) (All dimensions shown are in mm) 72
3.5 Image showing capturing of the macrostructure of the weld cross section using stereozoom microscope 73
3.6 Image showing capturing of the microstructure using optical microscope 74
3.7 Scanning electron microscope (SEM) apparatus used in the present work 76
5.1 Single loop EPR (SLEPR) curve 84
5.2 Double loop EPR (DLEPR) curve 85
5.3 Schematic illustration showing the cross-section of the weld metal (along X-X) and HAZ (along Y-Y), selected from each joint for DOS and pitting corrosion studies 87
5.4 Experimental setup used for DLEPR and Potentiodynamic anodic polarization tests: (a) Computer, Potentiostat and Test cell as attached to each other (b) Potentiostat (c) Test cell showing connections as given to different electrodes as well the test sample 88
5.5 Potentiodynamic anodic polarization curve to evaluate the pitting potential (E_{pitu}). (arrows indicate the path followed by the curve during testing) 90
6.1 Macrographs showing the weld cross section at: (a) low heat input; (b) medium heat input; (c) high heat input (at 10X), (where, w=weld width after giving cover pass/second weld pass and p=side wall penetration depth) 93
6.2 Photomicrograph (at 100X) of the weld metal cover pass/second weld pass (in the as welded condition): (a) low heat input weld; (b) medium heat input weld; (c) high heat input weld 97
6.3 Photomicrograph (at 100X) of the weld metal comprising of $\text{HAZ}_\text{weld}_{\text{pass}}$ (in the as welded condition): (a) low heat input weld; (b) medium heat input weld; (c) high heat input weld. (FB: fusion boundary)

6.4 Photomicrograph (at 100X) of the weld metal cover pass/second weld pass (thermally aged condition of 500°C for 11 days): (a) low heat input weld; (b) medium heat input weld; (c) high heat input weld

6.5 Photomicrograph (at 100X) of the weld metal comprising of $\text{HAZ}_\text{weld}_{\text{pass}}$ (thermally aged condition of 500°C for 11 days): (a) low heat input weld; (b) medium heat input weld; (c) high heat input weld (FB: fusion boundary), (IDC- inter-dendritic corrosion can be seen at the δ-γ interface)

6.6 Photomicrograph (at 100X) of the weld metal cover pass/second weld pass (thermally aged condition of 650°C for 24 hours): (a) low heat input weld; (b) medium heat input weld; (c) high heat input weld. (IDC- inter-dendritic corrosion can be seen at the δ-γ interface)

6.7 Photomicrograph (at 100X) of the weld metal comprising of $\text{HAZ}_\text{weld}_{\text{pass}}$ (thermally aged condition of 650°C for 24 hours): (a) low heat input weld; (b) medium heat input weld; (c) high heat input weld (FB: fusion boundary), (IDC- inter-dendritic corrosion can be seen at the δ-γ interface)

6.8 Photomicrograph (at 100X) of the zones comprising of HAZ (largely), FBZ and epitaxial growth region of the weld metal corresponding to low heat input in the: (a) as welded condition; (b) LTS3 condition (500°C for 11days); (c) CS3 condition (650°C for 24hours). (FB: fusion boundary)

6.9 Photomicrograph (at 100X) of the zones comprising of HAZ (largely), FBZ and epitaxial growth region of the weld metal corresponding to medium heat input in the: (a) as welded condition; (b) LTS3 condition (500°C for 11days); (c) CS3 condition (650°C for 24hours). (FB: fusion boundary)

6.10 Photomicrograph (at 100X) of the zones comprising of HAZ (largely), FBZ and epitaxial growth region of the weld metal corresponding to high heat input in the: (a) as welded condition; (b) LTS3 condition
(500°C for 11days); (c) CS3 condition (650°C for 24hours). (FB: fusion boundary)

6.11 Microhardness variation across different zones of the weldments (low heat-input): (a) in the as-welded and under different LTS conditions (b) in the as-welded and under different CS conditions

6.12 Microhardness variation across different zones of the weldments (medium heat input): (a) in the as welded and under different LTS conditions (b) in the as welded and under different CS conditions

6.13 Microhardness variation across different zones of the weldments (high heat input): (a) in the as welded and under different LTS conditions (b) in the as welded and under different CS conditions

6.14 Transverse tensile strength (UTS) of different welded joints in various conditions: (a) as welded and different LTS conditions; (b) as welded and different CS conditions

6.15 Yield strength (YS) of different welded joints in various conditions: (a) as welded and different LTS conditions; (b) as welded and different CS conditions

6.16 Percentage elongation of different welded joints in various conditions: (a) as welded and different LTS conditions; (b) as welded and different CS conditions

6.17 SEM fractographs (at 500X & 1000X) of the transverse tensile specimens corresponding to low heat input in the: (a & b) as welded condition; (c & d) LTS3 condition (500°C for 11days); (e & f) CS3 condition (650°C for 24hours)

6.18 SEM fractographs (at 500X & 1000X) of the transverse tensile specimens corresponding to medium heat input in the: (a & b) as-welded condition; (c & d) LTS3 condition (500°C for 11days); (e & f) CS3 condition (650°C for 24hours)

6.19 SEM fractographs (at 500X & 1000X) of the transverse tensile specimens corresponding to high heat input in the: (a & b) as welded condition; (c & d) LTS3 condition (500°C for 11days); (e & f) CS3 condition (650°C for 24hours)

6.20 CVN impact energy results of the weldments {(a) weld metal and (b)
HAZ) showing toughness variation of the joints welded with different heat inputs (low, medium & high), subjected to different thermal aging conditions (in the LTS range) and tested at room temperature (RT) and cryogenic temperature (CT) around -196°C

6.21 CVN impact energy results of the weldments {(a) weld metal and (b) HAZ} showing toughness variation of the joints welded with different heat inputs (low, medium & high), subjected to different thermal aging conditions (in the CS range) and tested at room temperature (RT) and cryogenic temperature (CT) around -196°C

6.22 SEM fractographs (weld metal at 500X) of the CVN impact tested specimens tested at cryogenic temperature around -196°C corresponding to low heat input in the: (a) as welded condition; (b) LTS3 condition (500°C/11days); (c) CS3 condition (650°C/24hours)

6.23 SEM fractographs (weld metal at 500X) of the CVN impact tested specimens tested at cryogenic temperature around -196°C corresponding to medium heat input in the: (a) as welded condition; (b) LTS3 condition (500°C/11days); (c) CS3 condition (650°C/24hours)

6.24 SEM fractographs (weld metal at 500X) of the CVN impact tested specimens tested at cryogenic temperature around -196°C corresponding to high heat input in the: (a) as welded condition; (b) LTS3 condition (500°C/11days); (c) CS3 condition (650°C/24hours)

6.25 SEM fractographs (HAZ at 500X) of the CVN impact tested specimens tested at cryogenic temperature around -196°C corresponding to low heat input in the: (a) as welded condition; (b) LTS3 condition (500°C/11days); (c) CS3 condition (650°C/24hours)

6.26 SEM fractographs (HAZ at 500X) of the CVN impact tested specimens tested at cryogenic temperature around -196°C corresponding to medium heat input in the: (a) as welded condition; (b) LTS3 condition (500°C/11days); (c) CS3 condition (650°C/24hours)

6.27 SEM fractographs (HAZ at 500X) of the CVN impact tested specimens tested at cryogenic temperature around -196°C corresponding to high heat input in the: (a) as welded condition; (b) LTS3 condition (500°C/11days); (c) CS3 condition (650°C/24hours)
6.28 DLEPR curves of the weld metal (low heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.29 DLEPR curves of the weld metal (medium heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.30 DLEPR curves of the weld metal (high heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.31 DLEPR curves of the HAZ (low heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.32 DLEPR curves of the HAZ (medium heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.33 DLEPR curves of the HAZ (high heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.34 Photomicrograph (at 100X) of the weld metal cover pass (thermally aged condition at 500°C for 11 days) after pitting corrosion test: (a) low heat input weld; (b) medium heat input weld; (c) high heat input weld

6.35 Photomicrograph (at 100X) of the weld metal comprising of HAZ\textsubscript{weld} \text{pass} (thermally aged condition at 500°C for 11 days) after pitting corrosion test: (a) low heat input weld; (b) medium heat input weld; (c) high heat input weld (FB: fusion boundary)

6.36 Photomicrograph (at 100X) of the weld metal cover pass (thermally aged condition at 650°C for 24 hours) after pitting corrosion test: (a) low heat input weld; (b) medium heat input weld; (c) high heat input weld

6.37 Photomicrograph (at 100X) of the weld metal comprising of HAZ\textsubscript{weld} \text{pass} (thermally aged condition at 650°C for 24 hours) after pitting corrosion test: (a) low heat input weld; (b) medium heat input weld;
6.38 Photomicrograph (at 100X) of HAZ corresponding to low heat input after pitting corrosion test in the: (a) as welded condition; (b) LTS3 condition(500˚C for 11days); (c) CS3 condition(650˚C for 24hours). (FB: fusion boundary)

6.39 Photomicrograph (at 100X) of HAZ corresponding to medium heat input after pitting corrosion test in the: (a) as welded condition; (b) LTS3 condition (500˚C for 11days); (c) CS3 condition (650˚C for 24hours). (FB: fusion boundary)

6.40 Photomicrograph (at 100X) of HAZ corresponding to high heat input after pitting corrosion test in the: (a) as welded condition; (b) LTS3 condition (500˚C for 11days); (c) CS3 condition (650˚C for 24hours). (FB: fusion boundary)

6.41 Potentiodynamic anodic polarization curves of the weld metal (low heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.42 Potentiodynamic anodic polarization curves of the weld metal (medium heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.43 Potentiodynamic anodic polarization curves of the weld metal (high heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.44 Potentiodynamic anodic polarization curves of the HAZ (low heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.45 Potentiodynamic anodic polarization curves of the HAZ (medium heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions

6.46 Potentiodynamic anodic polarization curves of the HAZ (high heat input): (a) in the as welded and under different LTS conditions; (b) in the as welded and under different CS conditions