List of tables

Table 3.1: Chemical composition of JFE-EH400 quenched and tempered low alloy abrasion resistant steel, wt%.. 89
Table 3.2: Mechanical properties of JFE-EH400 quenched and tempered low alloy abrasion resistant steel ... 90
Table 3.3: Typical chemical composition of the different filler material electrodes used... 90
Table 3.4: Specifications and typical tensile properties of different filler material electrodes used... 91
Table 3.5: Filler material combinations used during welding ... 95
Table 3.6: Pass wise selection of welding parameters ... 95
Table 3.7: Filler material combinations used during welding ... 97
Table 3.8: Pass wise selection of welding parameters for the welded joints 97
Table 3.9: Etchants used for revealing microstructures of different weldments 103
Table 3.10: Composition of the etchants and etching techniques used in present work ... 103
Table 4.1: Factors and levels of independent variables for two-body abrasion wear test (POD) ... 134
Table 4.2: Factors and levels of independent variables for three-body abrasion wear test (DSRW) ... 135
Table 4.3: Components of CCRD ... 138
Table 4.4: Design matrix for two-body abrasion test in actual form .. 139
Table 4.5: Design matrix for three-body abrasion test in actual form .. 140
Table 4.6: Resulting ANOVA table for response surface quadratic model for two-body abrasion test ... 149
Table 4.7: Resulting ANOVA table for response surface quadratic model for three-body abrasion test ... 150
Table 4.8: Optimization results for two-body abrasion wear test 154
Table 4.9: Optimization results for three-body abrasion wear test 154
Table 4.10: Plan of confirmation experiments and results for two-body abrasion test .. 155
Table 4.11: Plan of confirmation experiments and results for three-body abrasion test.. 155
Table 5.1: Microhardness along different directions of the weldments 196
Table 5.2: Microhardness values along and across WCL of welded joints 197
Table 5.3: Transverse tensile properties of the base metal and the welded joints 206
Table 5.4: Tensile properties of the base metal and the welded joints 211
Table 5.5: Impact properties of the base metal and the welded joints 216
Table 5.6: Impact toughness values (at room temperature) and the average microhardness (along M-M direction for 10 mm distance from the surface) of the base metal and the welded joints .. 218
Table 5.7: Impact toughness (at room temperature) and other observations of the base metal and the welded joints impact fractured specimens 228
Table 5.8: Silicon carbide particles size distribution ... 233
Table 5.9: Optimization results for two-body abrasion test (POD) 244
Table 5.10: Optimization results for three-body abrasion test (DSRW) 244
Table 5.11: Pass wise microstructural phases and average microhardness values of the weld metal of the welded joints .. 245
Table 5.12: Results of wear loss of different weldments subjected to two-body abrasion test conditions (Load=20 N, No. of revolutions=300, Abrasive paper=80 mesh) ...246

Table 5.13: Results of three-body abrasion test for different weldments249