List of figures

Figure 1.1: Schematic representation of SMAW process (ANSI/AWS, 1996)15
Figure 1.2: Schematics showing gas tungsten arc welding process: (a) overall process,
(b) enlarged view of the welding area (Kou, 2003) ..16
Figure 2.1: Different zones of steel weldment as represented on an Iron Carbon
 equilibrium diagram (Easterling, 1992) ..66
Figure 3.1: Dimensions of various joint designs: (a) double V butt joint; (b) double U
 butt joint; (c) composite butt joint ..92
Figure 3.2: Photographs showing the actual welding conditions: (a) plates clamped on
 the welding fixture; (b) welded plate showing weld bead92
Figure 3.3: Schematic detail of weld passes sequence used for various joint designs:
(a) double V butt joint; (b) double U butt joint; (c) composite butt joint ..95
Figure 3.4: Sectioning layout for extracting the testing specimens98
Figure 3.5: Schematic showing Charpy V notch impact specimen (all dimensions in
 mm) ..100
Figure 3.6: Schematic showing transverse tensile test specimen (all dimensions in
 mm) ..100
Figure 3.7: Directions of microhardness traverses for: (a) JV joint; (b) JU joint; (c) JC
 joint ..106
Figure 3.8: Schematic showing the typical regions of fractured end of impact tested
 specimen (ASTM, 2012) ..107
Figure 4.1: Abrasion wear modes: (a) two-body abrasion; (b) three-body abrasion
 (Rabinowicz, 1965) ..121
Figure 4.2: Schematic illustration of the mechanisms of material removal during
 abrasion: (a) ploughing; (b) cutting; (c) cracking ...122
Figure 4.3: Graph showing the variation of wear rate with material hardness (Tylczak & Oregon, 1992)..125

Figure 4.4: Schematic diagram of the pin-on-disc test for sliding abrasion: FT–transverse feed..130

Figure 4.5: Schematic diagram of dry sand rubber wheel abrasion test apparatus (ASTM, 2010a)..131

Figure 4.6: Central composite rotatable design for three variables: red circles—factorial points; yellow circles—star points; blue circles—center points ..138

Figure 4.7: Plot of residuals vs. predicted response for different wear testing conditions of base metal: (a) two-body abrasion; (b) three-body abrasion ..151

Figure 4.8: Normal probability plot of residuals for different wear testing conditions of base metal: (a) two-body abrasion; (b) three-body abrasion...152

Figure 4.9: Plot of predicted vs. actual response for different wear testing conditions of base metal: (a) two-body abrasion; (b) three-body abrasion...152

Figure 5.1: Stereo-zoomed macrographs (at 10×) showing weld cross sections for different joints: (a1) JV, (a2) JU and (a3) JC; 1–WM, 2–CGHAZ, 3–FGHAZ, 4–SCHAZ, 5–BM..160

Figure 5.2: (a) Schematic showing geometrical features for double V joint design; cross section of different welds showing different zones of weldments: (b) WJM; (c) WJA; (d) WJMA; (e) WJG; (f) WJX (all at 10×); 1—WM, 2—CGHAZ, 3—FGHAZ, 4—SCHAZ, 5—BM..161

Figure 5.3: (a) Optical (100×) and (b) SEM (2000×) micrographs of the base metal162
Figure 5.4: Stereo-zoomed macrographs (at 10×), showing areas of micrographs extraction from different regions of weld cross-section for different welded joints: (a1) JV, (a2) JU and (a3) JC ... 163

Figure 5.5: Optical micrographs of the cover pass of the JV, JU and JC welded joints at different magnifications.. 164

Figure 5.6: Optical micrographs of the first pass of the JV, JU and JC welded joints at different magnifications.. 165

Figure 5.7: Optical micrographs of the root pass of the JV, JU and JC welded joints at different magnifications.. 166

Figure 5.8: Optical micrographs showing different regions of the heat affected zone of the JV welded joint; (a) CGHAZ, (b) FGHAZ and (c) SCHAZ (all at 400×)... 171

Figure 5.9: Optical micrographs showing different regions of the heat affected zone of the JU welded joint; (a) CGHAZ, (b) FGHAZ and (c) SCHAZ (all at 400×).. 172

Figure 5.10: Optical micrographs showing different regions of the heat affected zone of the JC welded joint; (a) CGHAZ, (b) FGHAZ and (c) SCHAZ (all at 400×).. 173

Figure 5.11: Optical photographs of WJM joint: (a) macrograph showing different locations of micrographs extraction (10×); (b, c, d) shows the micrographs of the fusion zone at root pass, first pass and cover pass (all at 400×) ... 175

Figure 5.12: Optical photographs of WJA joint: (a) macrograph showing different locations of micrographs extraction (10×); (b, c, d) shows the micrographs of the fusion zone at root pass (400×), first pass (400×) and cover pass (100×) .. 176
Figure 5.13: Optical photographs of WJMA joint: (a) macrograph showing different locations of micrographs extraction (10×); (b, c, d) shows the micrographs of the fusion zone at root pass (400×), first pass (400×) and cover pass (100×) ...178

Figure 5.14: Optical photographs of WJG joint: (a) macrograph showing different locations of micrographs extraction (10×); (b, c, d) shows the micrographs of the fusion zone at root pass, first pass and cover pass (all at 400×)....179

Figure 5.15: Optical photographs of WJX joint: (a) macrograph showing different locations of micrographs extraction (10×); (b, c, d) shows the micrographs of the fusion zone at root pass, first pass and cover pass (all at 400×)....181

Figure 5.16: Optical micrographs showing the CGHAZ region of different welded joints (all at 200×) ..183

Figure 5.17: Optical micrographs showing the FGHAZ region of different welded joints (all at 200×) ..185

Figure 5.18: Optical micrographs showing the SCHAZ region of different welded joints (all at 200×) ..186

Figure 5.19: Schematics showing the directions of microhardness measurements for welded joints: (a) JV; (b) JU; (c) JC joints (M-M–along WCL; X-X, Y-Y, Z-Z–across WCL)..188

Figure 5.20: Microhardness plots for the welded joints along the WCL (along M-M direction)..190

Figure 5.21: Microhardness plots for the welded joints across the WCL (along X-X direction)..192

Figure 5.22: Microhardness plots for the welded joints across the WCL (along Y-Y direction)..194
Figure 5.23: Microhardness plots for the welded joints across the WCL (along Z-Z direction) ... 195
Figure 5.24: Microhardness plots for the welded joints along the WCL (along M-M direction) ... 198
Figure 5.25: Microhardness plots for the welded joints across the WCL (along X-X direction) ... 202
Figure 5.26: Microhardness plots for the welded joints across the WCL (along Y-Y direction) ... 204
Figure 5.27: Microhardness plots for the welded joints across the WCL (along Z-Z direction) ... 205
Figure 5.28: Macrographs showing the location of fracture in the weld zone of the tensile specimens of joints: (a) JV joint; (b) JU joint; (c) JC joint (all at 10x) .. 207
Figure 5.29: Tensile strength, percentage elongation and reduction in area for JV, JU and JC joints .. 210
Figure 5.30: Tensile strength, percentage elongation and reduction in area for BM, WJM, WJA, WJMA, WJG and WJX welded joints 211
Figure 5.31: Optical macrographs of fractured tensile specimens of the base metal and the welded joints (all at 10x); (SL–shear lips, WM–weld metal, HAZ–heat affected zone) ... 212
Figure 5.32: Charpy impact toughness of JV, JU and JC joints on surface and root passes of the welded joints at room temperature (27 °C) and 0 °C 216
Figure 5.33: Optical fractographs showing the crack propagation path and the fractured ends of the impact tested specimens of the base metal and the welded
joints with V notch at the cover pass and tested at room temperature (all at 10×)..219

Figure 5.34: SEM fractographs of the fractured ends of tensile specimens of the base metal and the welded joints ..222

Figure 5.35: SEM fractographs of the tensile tested specimens of the base metal, WJM and WJA welded joints..223

Figure 5.36: SEM fractographs of the tensile tested specimens of the WJMA, WJG and WJX welded joints..224

Figure 5.37: SEM fractographs of fractured ends of the impact tested specimens of the base metal and the welded joints (all at 10×): (FI—Fracture initiation region; SL—Shear lips; UF—Unstable fracture region; FF—Final fracture region)...227

Figure 5.38: SEM fractographs of Charpy impact tested specimens of the base metal, WJM and WJA welded joints..230

Figure 5.39: SEM fractographs of Charpy impact tested specimens of the WJMA, WJG and WJX welded joints..231

Figure 5.40: Morphology of silicon carbide particles: (a) & (b) loose particles; (c) bonded particles of 80 grit size; (d) bonded particles of 180 grit size.....233

Figure 5.41: Interaction effect of load and number of revolutions on wear loss for grit size of 180 mesh ...235

Figure 5.42: Interaction plot for wear loss between load and number of revolutions at grit size of 80 mesh...235

Figure 5.43: Interaction plot for wear loss between load and grit size at 200 revolutions ...235
Figure 5.44: Interaction plot for wear loss between number of revolutions and grit size at 15N load ... 235

Figure 5.45: 3D surface graph for wear loss at a grit size of 80 mesh 236

Figure 5.46: 3D surface graph for wear loss at a grit size of 180...................... 236

Figure 5.47: Cube plot for wear loss under two-body abrasion of the base metal...... 237

Figure 5.48: Single factor effect of input variables on wear loss: (Centre point values; Load=80 N, Speed=3 m/s, No. of revolutions=1500 and Abrasives flow rate=250 gm/min) ... 238

Figure 5.49: Interaction effect of load and speed on wear loss (No. of revolution=1500, Abrasives flow rate=250 gm/min)................................. 240

Figure 5.50: Interaction effect of load and No. of revolutions on wear loss (Speed=3 m/s, Abrasives flow rate=250 gm/min)... 240

Figure 5.51: Interaction effect of load and abrasives flow rate on wear loss (Speed=3m/s, No. of revolutions=1500)... 240

Figure 5.52: Interaction effect of No. of revolutions and abrasives flow rate on wear loss (Speed=3 m/s, Load=80N).. 240

Figure 5.53: 3D surface graph showing the effect of load and speed on wear loss (No. of revolutions=1500, Abrasives flow rate=250 gm/min)....................... 241

Figure 5.54: 3D surface graph showing the effect of load and No. of revolutions on wear loss (Speed=3 m/s, Abrasives flow rate=250 gm/min)....................... 241

Figure 5.55: 3D surface graph showing the effect of load and abrasives flow rate on wear loss (Speed=3 m/s, No. of revolutions=1500)......................... 241

Figure 5.56: Cube plot for minimum wear loss at abrasives flow rate of 200 gm/min ... 243
Figure 5.57: Cube plot for maximum wear loss at abrasives flow rate of 300 gm/min ...243

Figure 5.58: Plot of wear loss for two-body abrasion of the base metal and the fusion zone of the welded joints ...247

Figure 5.59: Plot of wear loss for two-body abrasion at the heat affected zone of the welded joints ...248

Figure 5.60: Plot of wear loss under three-body abrasion test of the welded joints249

Figure 5.61: SEM macrographs of the worn pin surfaces of the BM under two-body abrasive wear conditions: (a) minimum abrasion; (b) maximum abrasion (all at 10×) ..252

Figure 5.62: SEM micrographs of the pin surface of the BM worn out under minimum two-body abrasive wear conditions of 10 N load against 180 grit abrasive paper for 100 revolutions ...252

Figure 5.63: SEM micrographs of the pin surface of the BM worn out under maximum two-body abrasive wear conditions of 20 N load against 80 grit abrasive paper for 300 revolutions ...252

Figure 5.64: Optical macrographs (a1 & b1); SEM micrographs of the central region of the wear scars on the base material for both the minimum (a2 & a3) and the maximum (b2 & b3) three-body abrasive wear conditions254

Figure 5.65: SEM macrographs of different weldments: (a) WJM; (b) WJA; (c) WJMA; (d) WJG; (e) WJX; (f) HAZ of WJX joint (all at 15×)255

Figure 5.66: SEM micrographs of worn pin surfaces of the weld metal of the welded joints worn under maximum two-body abrasion wear conditions: (a1) & (a2) WJM; (b1) & (b2) WJA; (c1) & (c2) WJMA ..256
Figure 5.67: SEM micrographs of worn pin surfaces of the weld metal and HAZ of the welded joints worn under maximum two-body abrasion wear conditions: (a1) & (a2) WJG; (b1) & (b2) WJX; (c1) & (c2) HAZ of WJX joint.....259

Figure 5.68: SEM micrographs of the central regions of the wear scars on the welded joints worn under maximum three-body abrasion wear conditions: (a1) & (a2) WJM; (b1) & (b2) WJA; (c1) & (c2) WJMA263

Figure 5.69: SEM micrographs of the central regions of the wear scars on the welded joints worn under maximum three-body abrasion wear conditions: (a1) & (a2) WJG; (b1) & (b2) WJX...265