PLATE 1

Hydrogonium arcuatum

A. Spore germination showing emergence of tube; B. Chloronema; C. Caulonema; D. Bud on protonema;
E. Control culture.
PLATE 2

Hydrogonium arcuatum

Effect of auxins: A. Culture supplemented with 10^{-8} M IAA; B. Culture supplemented with 10^{-6} M 2,4-D; C. Culture supplemented with 10^{-8} M NAA; D. Culture supplemented with 10^{-8} M NOA.
Plate 3

Hydrogonium arcuatum

Effect of cytokinins: A. Culture supplemented with 10^{-5}M BAP; B. Culture supplemented with 10^{-4}M BAP; C. Culture supplemented with 10^{-5}M Kinetin; D. Culture supplemented with 10^{-5}M Kinetin; E. Culture supplemented with 10^{-6}M 2 iP
Hydrogonium arcuatum

A. Cultures supplemented with 10^8M BAP; B. Cultures supplemented with 10^5M BAP; C. Culture supplemented with 10^8M GA$_3$; D. Culture supplemented with 10^6M Kinetin.
Effect of heavy metals: Production of gemmae like structures.

A. Gemma from cultures supplemented with 10^{-8}M cadmium acetate; B. Gemma from cultures supplemented with 10^{-8}M cadmium sulphate; C. Gemmae from cultures supplemented with 10^{-5}M cadmium nitrate; D. Gemma from cultures supplemented with 10^{-6}M lead acetate.
PLATE 6

Hydrogonium arcuatum

Developmental stages in gemma formation:
A. Gemma initial;
B. Swollen apical cell showing transverse division;
C-D. Vertical divisions and basal hyaline cell for detachment of gemmae at maturity;
E. Multicellular gemma showing hyaline basal cell;
F. Mature gemmae.
Plate 7

Anoectangium clarum

Spore germination and protonema formation: A-C. Various stages of spore germination showing uni- and bipolar germination; D. Chloronema showing transverse walls and dense chloroplasts; E. Heterotrichous caulonemal filament.
Plate 8

Anoectangium clarum

Effect of auxins: **A.** Control culture at 3,500 lux; **B.** Cultures supplemented with 10^{-7}M 2,4-D showing maximum protonemal growth; **C.** Cultures supplemented with 10^{-8}M IAA showing thin long shoots; **D.** Cultures supplemented with 10^{-6}M 2,4-D showing long brown prostrate branch.
PLATE 9

Anoectangium clarum

A. Cultures supplemented with 10^{-8} M NAA showing thin long shoots; B. Cultures supplemented with 10^{-5} M NAA showing thick short shoots; C. Cultures supplemented with 10^{-8} M NOA showing thin long shoots.
Plate 10

Anoectangium clarum

Effect of cytokinins showing reduced aerial system:
A. Cultures supplemented with 10^{-7} M BAP;
B. Cultures supplemented with 10^{-6} BAP;
C. Cultures supplemented with 10^{-8}M Kinetin;
D. Cultures supplemented with 10^{-6}M Kinetin.
Plate 11

Anoctangium clarum

Effect of cytokinins - 2 iP:
A. Cultures supplemented with 10^{-4}M;
B. Cultures supplemented with 10^{-5}M;
C. Cultures supplemented with 10^{-6}M;
D. Cultures supplemented with 10^{-7}M.
PLATE 12

Anoectangium clarum

A. Cultures supplemented with 10^{-5}M GA$_3$ showing brown-green protonema; B. Cultures supplemented with 10^{-6} cadmium acetate showing abnormal protonema; C. Cultures supplemented with 10^{-8}M cadmium sulphate showing pale-green protonema; D. Culture supplemented with 10^{-4}M cadmium nitrate showing aerial protonemal filament; E. Control culture.
Plate 13

Anoectangium clarum

Effect of heavy metals: A. Normal caulonemal filament; B. Cultures showing swollen terminal cell; C. Formation of spherical cells; D. Germinating brood cells on fresh basal medium; E. Brood cell
Plate 14

Anoectangium clarum

Effect of cadmium sulphate: *(A-D)* Brood cell formation at lower concentrations of cadmium sulphate.
Plate 15

Anoectangium clarum

Effect of cadmium nitrate: A. Normal protonema B-E. Formation of spherical cells at higher concentrations of cadmium nitrate F. Brood cell producing fresh protonema on basal medium.
Plate 16

Anoectangium clarum

Effect of lead acetate: A-D. Cultures showing protonema with various abnormalities
Plate 17

Anoectangium clarum

Effect of lead nitrate: **A.** Swollen tip **B-F.** Formation of spherical cells at higher concentration of lead nitrate.