List of tables

Chapter 1: Introduction
Table 1.1 Activities causing some common work-related musculoskeletal disorders 4
Table 1.2 Work-related activities resulting into CTS development 23

Chapter 3: Materials and methods
Table 3.1 Human vibration exposure action and their limiting values 64
Table 3.2 Parametric vs Non-Parametric tests and their applicability 69
Table 3.3 (2 × 2) contingency table set-up used for Fisher’s exact 70
Table 3.4 One way ANOVA table 74
Table 3.5 One Way ANOVA: Computational Procedures 75

Chapter 4: Analysis for prevalence of Carpal Tunnel Syndrome amongst automotive glass channel rubber assembly line workers (Case No.1)
Table 4.1 Statistics of assembly line workers under study based on age, gender, weight, hand grip strength, body mass index (BMI) and job duration 86
Table 4.2 Impact of age on CTS levels 87
Table 4.3 Impact of BMI on CTS levels 88
Table 4.4 Impact of gender on CTS level 88
Table 4.5 Operation-wise survey based CTS data on work with finger and difficulty in grasping 90
Table 4.6 Symptoms based (2 × 2) contingency table of CTS data for Chi square test 92
Table 4.7 Survey based Observed Frequency data in assembly line 92
Table 4.8 Expected Frequencies of assembly line workers 92
Table 4.9 Calculated χ^2 value of assembly line workers 92
Table 4.10 Calculated values of dependent and independent variables 92
for data in table 4.5

Table 4.11 The mean EMG-RMS value of workers with CTS symptoms of manual assembly line operations such as resizing, moulding, clipping, trimming, taping, pad insertion and inspection

Table 4.12 Mean EMG-RMS value of healthy workers (with No-CTS symptom) engaged in manual assembly line operations such as resizing, moulding, clipping, trimming, taping, pad insertion, inspection

Table 4.13 Mean EMG-RMS value of manual assembly line workers in each Operation

Table 4.14 Workers classification based on operation and level of repetition exposure

Table 4.15 Gender-wise mean and standard deviation of age, weight, hand grip strength, body mass index (BMI) and employment duration for the subjects

Table 4.16 Primary CTS risk factors used in present study

Table 4.17 Test of difference between men and women workers considering CTS related symptoms, and by applying Fisher’s Exact Test

Table 4.18 SPSS based analysis for impact of gender on CTS

Table 4.19 SPSS based analysis for impact of CTS on multiple factors

Table 4.20 Factors and symptoms of concern and respective levels

Table 4.21 Construction of OA_{16} (4^5) by using dummy-level technique

Table 4.22 ANOVA for CTS-study

Table 4.23: Average age at different levels for the dominating factors GS and TG

Table 4.24 Prevalence of hand symptoms

Table 4.25 Result of t-test for analysis of impact of vibration on workers

Table 4.26 Myoelectric signal values and relevant hand grip strength for different subjects
Chapter 5: Study of CTS and productivity factors in traditional and semi-ergonomic shocker manufacturing unit (Case No. 2)

Table 5.1 Work repetitions with time scale 122
Table 5.2 Descriptive statistics for traditional shocker assembly unit 123
Table 5.3 Descriptive statistics for semi-ergonomic assembly unit 124
Table 5.4 Statistical analysis results (Mann Whitney test) 125
Table 5.5 CTS and Productivity factors comparison in traditional and semi-ergonomic industry in the age group 20-40 years 126
Table 5.6 The Chi-Square of Independence Table for CTS sufferers based on Industries 127
Table 5.7 CTS symptom data for the traditional and semi-ergonomic industry 129
Table 5.8 Comparison among traditional and semi-ergonomic units on the basis of awkward postures 131
Table 5.9 Association of heavy loads and type of industry (Chi-square test) 132
Table 5.10 Impact of operations on CTS symptoms in semi-ergonomic assembly unit 133
Table 5.11 Impact of operation on CTS symptoms in traditional assembly unit 133

Chapter 6: Study of hand-arm-vibration exposure on CTS symptoms and occurrence (Case No. 3)

Table 6.1 Consolidated data of age, weight, height, body mass index (BMI) and employment duration for the subject/population 137
Table 6.2 Prevalence of CTS symptoms in the population 138
Table 6.3 Chi square test results for effect of vibration exposure time level on CTS symptoms 140
Table 6.4 Correlation between CTS symptoms and job duration 142
Table 6.5 Correlation between CTS symptoms and vibration amplitude exposure level 143
Table 6.6 Association between CTS symptom severity level and industrial shop 144
Table 6.7 Correlation between EMG RMS and amplitude of vibration 149
Table 6.8 Correlation test results for hand grip strength and EMG RMS 149
Table 6.9 Correlation of potential CTS symptoms with EMG RMS 150

Chapter 7: Study of pinch strengths and CTS occurrence in muffler assembly line workers (Case No. 4)
Table 7.1 Statistics of demographics and various strengths of workers under study 156
Table 7.2 CTS symptoms severity levels 158
Table 7.3 Impact of Age and BMI rate on CTS Sufferers 160
Table 7.4 Impact of CTS on hand grip strength of dominant and non-dominant hand 162
Table 7.5 Pearson’s correlation for CTS symptoms with various factors 163
Table 7.6 Pearson’s correlation for CTS symptoms with CTS occurrence 165
Table 7.7 Impact of CTS on pinch strengths 169
Table 7.8 Correlation of sEMG RMS values with CTS severity levels and CTS symptoms 175