Table of Contents

Abstract v
Table of contents viii
List of figures xiii
List of tables xviii
List of abbreviation xxiv
List of symbols xxviii

Chapter 1: Introduction 1-26
1.1 Work place and Musculoskeletal disorders (MSDS) 1
1.2 Work-related musculoskeletal disorders (WMSDS) 2
1.2.1 Causes of Work-related MSDs 4
1.2.2 Biomechanical approach to WMSDs 5
1.2.3 Upper extremity disorders and the workplace 8
1.3 Repetitive strain injury (RSI) 9
1.3.1 Types of RSI 10
1.3.2 Findings of positive RSI 10
1.4 Carpal tunnel syndrome 14
1.4.1 Anatomy of human hand and CTS 15
1.4.2 Symptoms and causes of CTS 17
1.4.3 CTS risk factors 19
1.4.4 Work related CTS 21
1.4.5 CTS treatment 24
1.5 Motivation and objectives 24
1.6 Significance of work 25
1.7 Scope of research 25
1.8 Originality of research 26
1.9 Organization of the Thesis 26
Chapter 2: Literature review

2.1 Introduction

2.2 Prevalence of CTS

2.2.1 Identification of CTS risk factors and related issues

2.2.2 Effect of vibration on CTS

2.2.3 Effect of pinch job on CTS

2.2.4 Presenteeism of tools and techniques for handling data

2.2.5 Electro-physiological /electro diagnostic testing and its analysis

2.3 Problem formulation and methodology

Chapter 3: Materials and methods

3.1 Materials for Carpal Tunnel Syndrome occurrence

3.1.1 EPDM automotive glass channel assembly line (Case No. 1)

3.1.2 Traditional and semi-ergonomic shocker manufacturing assembly line (Case No. 2)

3.1.3 Hand-arm-vibration/Gear manufacturing industry (Case No. 3)

3.1.4 Muffler assembly line industry (Case No. 4)

3.2 Methods for determining CTS occurrence

3.2.1 Physical tests for CTS occurrence

3.2.1.1 Phalen’s test

3.2.1.2 Tinel’s Test

3.2.1.3 Reverse Phalen’s Test

3.2.1.4 Carpal Compression Test

3.2.2 Measurement system for CTS

3.2.2.1 Surface Electromyography (sEMG) and MP data acquisition system

3.2.2.2 Hand grip strength measurement

3.2.2.3 Types of pinch strength and their measurements with hydraulic pinch gauge

3.2.2.4 Vibration measurements

3.2.2.5 Joint motions of wrist postures measurements

3.3 Statistical Techniques
3.3.1 Fisher’s exact test 70
3.3.2 Chi- Square test 71
3.3.3 Correlation analysis 71
3.3.4 Independent t-test 72
3.3.5 F-test 73
3.3.6 Analysis of variance (ANOVA) test 74
3.3.7 Test for the equality of different proportions 75
3.3.8 Multiple regression analysis 76
3.3.9 Artificial neural network (ANN) 77

3.4 Summary 79

Chapter 4: Analysis for prevalence of Carpal Tunnel Syndrome amongst automotive glass channel rubber assembly line workers (Case No. 1) 80-111

4.1 Introduction 80
4.2 Operation wise analysis for occurrence of CTS symptoms in assembly line workers 84

4.2.1 Experimentation and data collection 84
4.2.2 SPSS based data analysis of workers 86

4.2.2.1 Significant characteristics of workers 86
4.2.2.2 Impact of demographics on prevalence of CTS 87
4.2.2.3 Impact of work with upper extremities and work with fingers on CTS 89
 4.2.2.4 Relationship of ‘work with fingers’ and ‘difficulty in grasping (DIG) ’symptoms 90

4.2.3 Data analysis 91

4.2.3.1 Comparison of impact of ‘Difficulty in grasping’ versus ‘other potential CTS symptoms’ using Chi-square test 91

4.2.3.2 Impact of ‘work with fingers’ and ‘difficulty in grasping’ on CTS symptoms using correlation analyses 93

4.2.4 sEMG based analysis of CTS symptoms 94
4.3 Occupational risk factor analysis for occurrence of CTS symptoms

4.3.1 Data collection

4.3.2 Impact of gender on various CTS symptoms
 4.3.2.1 Analysis using Fisher’s exact test
 4.3.2.2 Analysis using SPSS package

4.3.3 Group difference between CTS and Non-CTS sufferers based on multiple factors

4.3.4 Design of experiments

4.3.5 Job repetition based analysis for occurrence of CTS

4.3.6 Impact of vibration on CTS occurrence

4.3.7 CTS symptoms analysis through sEMG
 4.3.7.1 Myoelectric signal analysis

4.4 Summary

Chapter 5: Study of CTS and productivity factors in traditional and semi-ergonomic shocker manufacturing unit (Case No. 2)

5.1 Introduction

5.2 Automotive shocker

5.3 Shocker assembly line
 5.3.1 Traditional shocker assembly line
 5.3.2 Semi-ergonomic based shocker assembly line
 5.3.3 Operations in manual and semi-ergonomic assembly line

5.4 Data collection
 5.4.1 Analytical trend of CTS and productivity factors
 5.4.2 Analytical trend of CTS and productivity factors within same age group workers
 5.4.3 The impact of type of industry (traditional/semi-ergonomic) on CTS symptoms
 5.4.4 Impact of awkward posture on CTS occurrence
 5.4.5 Association of heavy loads and type of industry
 5.4.6 Impact of operation on CTS symptoms

5.5 Summary
Chapter 6: Study of hand-arm vibration exposure on CTS symptoms and occurrence (Case No. 3) 135-152

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>135</td>
</tr>
<tr>
<td>6.2</td>
<td>Experimentation and data collection</td>
<td>136</td>
</tr>
<tr>
<td>6.3</td>
<td>Data analysis</td>
<td>137</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Prevalence of CTS symptoms in present population</td>
<td>137</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Impact of vibration exposure hours in a day on CTS symptoms</td>
<td>139</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Impact of job duration in years on CTS symptoms</td>
<td>141</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Impact of magnitude of vibration amplitude on potential CTS symptoms</td>
<td>142</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Effect of deployment in a shop on CTS symptoms</td>
<td>144</td>
</tr>
<tr>
<td>6.4</td>
<td>Study based on sEMG</td>
<td>145</td>
</tr>
<tr>
<td>6.4.1</td>
<td>sEMG data collection</td>
<td>146</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Relationship between sEMG and magnitude of vibration (amplitude)</td>
<td>147</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Relationship between hand grip strength and sEMG signal</td>
<td>149</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Relationship between CTS symptoms and sEMG signal</td>
<td>149</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary</td>
<td>151</td>
</tr>
</tbody>
</table>

Chapter 7: Study of pinch strengths and CTS occurrence in muffler assembly line workers (Case No. 4) 153-176

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>7.2</td>
<td>Subject and method</td>
<td>153</td>
</tr>
<tr>
<td>7.3</td>
<td>Data collection</td>
<td>155</td>
</tr>
<tr>
<td>7.4</td>
<td>Compilation of data for prevalence of CTS symptoms</td>
<td>158</td>
</tr>
<tr>
<td>7.5</td>
<td>Statistical analysis</td>
<td>159</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Impact of age and BMI rate on occurrence of CTS</td>
<td>159</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Impact of hand grip strength of dominant and non-dominant hands on occurrence of CTS</td>
<td>161</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Influence of demographics and hand grip strength on CTS symptoms</td>
<td>162</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Study on relationship between CTS symptoms and disease</td>
<td>164</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Wrist pain and numbness based CTS prediction using</td>
<td>166</td>
</tr>
</tbody>
</table>
artificial neural network

7.5.6 Impact of CTS occurrence on pinch strength 168
7.5.7 Exploratory data analysis 171
7.6 Analysis using surface electromyography signal (sEMG) 173
7.6.1 Relationship between Surface Electromyography (sEMG), CTS severity levels and CTS symptoms 174

7.7 Summary 176

Chapter 8: Conclusion and future scope of present work 177-183
8.1 Introduction 177
8.2 Analysis for prevalence of CTS amongst automotive glass channel rubber assembly line workers (Case No. 1) 177
8.2.1 Operation wise analysis for occurrence of CTS symptoms in assembly line workers 178
8.2.2 Occupational risk factor analysis for occurrence of CTS symptoms 179
8.3 Comparison of CTS and productivity factors in traditional and semi-ergonomic shocker manufacturing unit (Case No. 2) 179
8.4 Studies of hand-arm vibration exposure on CTS symptoms and occurrence (Case No. 3) 180
8.5 Study of pinch strengths and CTS occurrence in muffler assembly line workers (Case No. 4) 181
8.6 Future scope of the present work 183

Annexures 184-193

Annexure 1A 184
Annexure 1B 187
Annexure 2 189
Annexure 3 191
Annexure 4 193

References 194-210

Author's biography 211

List of publications 212