CONTENTS

CHAPTER NO | DESCRIPTION | PAGE NO

DECLARATION | | i
CERTIFICATE | | ii
ABSTRACT | | iii
ACKNOWLEDGEMENT | | iv
LIST OF FIGURES | | ix
LIST OF TABLES | | xi
LIST OF SYMBOLS | | xii
1. INTRODUCTION | | 1
 1.1 General | | 1
 1.2 Organization of the Thesis | | 5
 1.3 Summary | | 5
2. LITERATURE REVIEW | | 6
 2.1 General | | 6
 2.2 Steel Fiber Reinforced Concrete | | 6
 2.3 Mechanical Properties of Steel FRC | | 7
 2.4 Fiber Reinforced Concrete Exposed to Impact Load | | 8
 2.5 Two-Parameter Weibull Distribution | | 18
 2.6 Multivariate Linear Regression | | 19
 2.7 Objective and Scope | | 20
 2.8 Summary | | 21
3. MATERIALS PROPERTIES AND MIX PROPORTIONS | | 22
 3.1 General | | 22
 3.2 Materials | | 22
 3.2.1 Cement | | 22
 3.2.2 Fine Aggregate | | 23
 3.2.3 Coarse Aggregate | | 23
 3.2.4 High Range Water Reducing Admixture | | 24
 3.2.5 Steel Fibers | | 24
3.3 Mix Design
3.4 Mix proportions
3.5 Mixing procedure and specimen moulding
3.6 Summary

4. EXPERIMENTAL METHODOLOGY
4.1 General
4.2 Testing of Fresh Concrete - Slump Test
4.3 Testing of Hardened Concrete - Static Test
 4.3.1 Compressive Strength
 4.3.2 Splitting Tensile Strength
 4.3.3 Flexural Strength
 4.3.4 Modulus of Elasticity
4.4 Impact Testing
 4.4.1 Drop Weight Impact Test on 150 mm Diameter Cylinder and Prisms specimens
 4.4.2 Drop Weight Impact Test on 100 mm Diameter Cylindrical Specimen
 4.4.3 Drop Weight Impact Test on 100 mm Cubical Specimen
 4.3.3.1 Ultrasonic Pulse Velocity Test
4.5 Summary

5. FRESH AND MECHANICAL PROPERTIES OF FRC
5.1 General
5.2 Property of Fresh Concrete - Slump Test
5.3 Properties of Hardened Concrete - Static Test
 5.3.1 Effect of Fiber on Compressive Strength of Concrete
 5.3.2 Effect of Fiber on Splitting Tensile Strength of Concrete
 5.3.3 Effect of Fiber on Flexural Strength of Concrete
 5.3.4 Effect of Fiber on Modulus of Elasticity of Concrete
5.4 Summary

6. RESULTS AND DISCUSSION ON DROP WEIGHT IMPACT TEST
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 General</td>
<td>39</td>
</tr>
<tr>
<td>6.2 Loss of Mechanical Properties of FRC Exposed To Impact Load</td>
<td>39</td>
</tr>
<tr>
<td>6.2.1 Mechanical Properties of FRC Prior to Impact Load</td>
<td>39</td>
</tr>
<tr>
<td>6.2.2 Loss of Compressive Strength Exposed to Different Level of Impact Failure Load</td>
<td>41</td>
</tr>
<tr>
<td>6.2.3 Loss of Splitting Tensile Strength Exposed to Different Level of Impact Failure Load</td>
<td>43</td>
</tr>
<tr>
<td>6.2.4 Loss of Flexural Strength Exposed to Different Level of Impact Failure Load</td>
<td>44</td>
</tr>
<tr>
<td>6.2.4.1 Statistical Analysis of concrete using Two Parameter Weibull Distribution</td>
<td>46</td>
</tr>
<tr>
<td>6.2.4.2 Failure pattern of specimen under impact Load</td>
<td>48</td>
</tr>
<tr>
<td>6.2.5 Analysis and Modeling of Concrete Strength</td>
<td>54</td>
</tr>
<tr>
<td>6.2.5.1 Model to Predict the Percentage loss of Compressive Strength of FRC</td>
<td>54</td>
</tr>
<tr>
<td>6.2.5.2 Model to Predict the Percentage loss of Splitting Tensile Strength of FRC</td>
<td>56</td>
</tr>
<tr>
<td>6.2.5.3 Model to Predict the Percentage loss of Flexural Strength of FRC</td>
<td>57</td>
</tr>
<tr>
<td>6.2.5.4 Validation of the Model</td>
<td>57</td>
</tr>
<tr>
<td>6.3 Impact Test Results of 100 mm Diameter Cylindrical Specimen</td>
<td>58</td>
</tr>
<tr>
<td>6.3.1 Impact Energy of FRC at First Crack and Failure</td>
<td>58</td>
</tr>
<tr>
<td>6.3.2 Mode of Failure of plain and FRC under impact load</td>
<td>59</td>
</tr>
<tr>
<td>6.3.3 Model to Predict the Number of blows required to Cause the First Crack and Failure of PC and FRC</td>
<td>61</td>
</tr>
<tr>
<td>6.3.4 Linear Regression Model</td>
<td>62</td>
</tr>
<tr>
<td>6.3.4.1 Comparison between Impact Energy Versus Compressive strength</td>
<td>63</td>
</tr>
<tr>
<td>6.4 Reduction of Impact Strength Using UPV</td>
<td>69</td>
</tr>
<tr>
<td>6.4.1 Impact Test Results</td>
<td>69</td>
</tr>
<tr>
<td>6.4.2 Ultrasonic Pulse Velocity Test Results</td>
<td>70</td>
</tr>
</tbody>
</table>
6.4.3 Relationship Between UPV and Number of Blows under Impact Load 72

6.4.4 Failure Pattern of Cubes under Impact Load 75

6.5 Summary 76

7. CONCLUSIONS 77

7.1 General 77

7.2 Conclusions 77

7.3 Recommendations for Future Work 79

ANNEXURE I 80

REFERENCES 86

LIST OF PUBLICATIONS 92