Preface v

List of Tables xiii

List of Figures xvii

Acronyms xix

1 Overview 1
 1.1 Introduction 3
 1.2 Basic reliability concepts 4
 1.2.1 Reliability function 4
 1.2.2 Hazard function 4
 1.2.3 Mean time to failure 5
 1.2.4 Mean residual life 6
 1.3 Bayesian inference 7
 1.3.1 Likelihood function 8
 1.3.2 Prior probability distributions 8
 1.3.3 Posterior distribution 9
 1.4 Bayes’ theorem 9
 1.5 Types of prior distributions 10
 1.5.1 Informative priors 11
 1.5.2 Weakly informative priors 11
 1.5.3 Least informative priors 12
 1.5.4 Uninformative priors 13
2 Bayesian Reliability Analysis of Exponential Power Model
with Bathtub-shaped Failure Rate

2.1 Introduction ... 49
2.2 Exponential power distribution 50
 2.2.1 Characterization of failure rate function 51
2.3 Model formulation
2.4 Independence Metropolis algorithm 54
2.5 Laplace approximation
2.6 R functions for Bayesian computation 56
 2.6.1 The function LaplaceApproximation 56
2.7 Bayes analysis of exponential power model 58
2.8 Analysis of censored data with R 64
2.9 Exponential power regression analysis 70
Contents

2.9.1 Formulation of the model ... 71
2.10 Determination of burn-in and replacement time 75
2.11 Real data modeling .. 76
 2.11.1 Electronic device failure time data 76
 2.11.2 Transistor data ... 77
2.12 Conclusion .. 78

3 Bayesian Analysis of Reliability Improvement Experiments 79
 3.1 Introduction .. 81
 3.2 Terms and concepts ... 82
 3.3 Reliability experiment with a single factor 83
 3.4 A Bayesian approach to the analysis and
 model selection for failure time data 84
 3.4.1 Bayesian analysis of bearing failure times data under
 gamma model .. 85
 3.4.2 Bayesian analysis of the ball bearing failure times data
 under Weibull model .. 93
 3.4.3 Bayesian analysis of the ball bearing failure times data
 under log-normal model .. 97
 3.5 Model comparison ... 101
 3.6 Full factorial experiment in reliability 103
 3.6.1 Factorial analysis: Main Effect and Interaction 105
 3.7 2^k factorial experiment: A general discussion 105
 3.8 Metal alloy crack experiment 106
 3.8.1 Bayesian regression approach to the factorial analysis of
 metal alloy crack length data 107
 3.9 Concluding remarks .. 119

4 Bayesian Hierarchical Modeling of Degradation Data 121
 4.1 Introduction .. 123
 4.2 General degradation path model 124
 4.3 Practical motivating situation: Drug potency data 126
 4.3.1 Preliminary exploratory analysis 127
 4.4 Formulation of hierarchical model 127
 4.5 Metropolis-within-Gibbs algorithm 129
 4.6 The function jags ... 130
 4.7 Bayesian analysis of drug potency data 131