LIST OF FIGURES

Fig. 1. Habit of *Ludwigia prostrata* Roxb.

Fig. 2. Habit of *Ludwigia prostrata* Roxb. showing close view of the flower

Fig. 3. Profusely branched root system of *Ludwigia prostrata* Roxb.

Fig. 4. Profusely branched root system of *Ludwigia prostrata* Roxb.

Fig. 5. T.S. of leaf of *Ludwigia prostrata* Roxb.

Fig. 6. T.S. of stem of *Ludwigia prostrata* Roxb. (a portion enlarged)

Fig. 7. Habit of *Hibiscus vitifolius* Linn.

Fig. 8. T.S. of stem of *Hibiscus vitifolius* L.

Fig. 9. T.S. of leaf of *Hibiscus vitifolius* L.

Fig. 10. Surface view of the epidermis of *Hibiscus vitifolius* Linn. showing stellate hairs

Figs. 11 and 12. Ascitic fluid of tumour induced mice (control) showing prominent nucleoli and multiple vacuoles in the cytoplasm

Fig. 13. Ascitic fluid of tumour induced mice treated with root extract of *Ludwigia prostrata* Roxb. (50 mg/i.p.) showing lymphoma cells with multiple vacuoles in the cytoplasm and vacuoles in the nucleus

Fig. 14. Ascitic fluid of tumour induced mice treated with root extract of *Ludwigia prostrata* Roxb. (50 mg/i.p.) showing large lymphoma cells with multiple vacuoles and eccentric nuclei

Fig. 15. Ascitic fluid of tumour induced mice treated with root extract of *Ludwigia prostrata* Roxb. (100 mg/i.p.) showing blast nuclei with large macronucleoli and vacuoles in the cytoplasm.

Fig. 16. Ascitic fluid of tumour induced mice treated with root extract of *Ludwigia prostrata* Roxb. (100 mg/i.p.) showing more number of lymphoma cells with vacuoles indicating degeneration.

Fig. 17. Ascitic fluid of tumour induced mice treated with stem extract of *Ludwigia prostrata* Roxb. (50 mg/i.p.) showing degenerative changes in the nuclei of lymphoma cells

Fig. 18. Ascitic fluid of tumour induced mice treated with stem extract of *Ludwigia prostrata* Roxb. (100 mg/i.p.) showing nuclear degeneration in the smaller lymphoma cells
Fig. 19. Ascitic fluid of tumour induced mice treated with stem extract of *Ludwigia prostrata* Roxb. (100 mg/i.p.) cells are seen forming syncitium a feature of degeneration.

Fig. 20. Ascitic fluid of tumour induced mice treated with leaf extract of *Ludwigia prostrata* Roxb. (50 mg/i.p.) showing nuclear degeneration and fragmentation.

Fig. 21. Ascitic fluid of tumour induced mice treated with leaf extract of *Ludwigia prostrata* Roxb. (100 mg/i.p.) showing nuclear degeneration and cytoplasmic blebs.

Fig. 22. Ascitic fluid of tumour induced mice treated with seed extract of *Ludwigia prostrata* Roxb. (50 mg/i.p.) showing lymphophagocytosis.

Fig. 23. Ascitic fluid of tumour induced mice treated with seed extract of *Ludwigia prostrata* Roxb. (100 mg/i.p.) showing tumour giant cells.

Fig. 24a and b. Ascitic fluid of tumour induced mice treated with seed extract of *Ludwigia prostrata* Roxb. (100 mg/i.p.) showing irregular nuclear border due to degeneration of nucleus.

Fig. 25a and b. Ascitic fluid of tumour induced mice treated with flavonoid extracted from the flower of *Hibiscus vitifolius* Linn. (50 mg/i.p.) showing increased number of cytoplasmic vacuoles in the lymphoma cells.

Fig. 26. Ascitic fluid of tumour induced mice treated with flavonoid extracted from the flower of *Hibiscus vitifolius* Linn. (100 mg/i.p.) showing nuclear and cytoplasmic vacuoles.

Fig. 27. Ascitic fluid of tumour induced mice treated with flavonoid extracted from the flower of *Hibiscus vitifolius* Linn. (100 mg/i.p.) showing nuclear budding.

Fig. 28. Ascitic fluid of tumour induced mice treated with 5FU (20 mg/i.p.) showing degenerative changes in the form of fragmentation of nuclei and more number of vacuoles.

Fig. 29. Normal and tumour induced mice.

Fig. 30. Comparative study of Mean Survival Time (MST) on tumour induced mice and the effect of 5FU and root extract of *Ludwigia prostrata* Roxb. on the tumour induced mice.

Fig. 31. Comparative study of life span of tumour induced mice and the effect of 5FU and root extract of *Ludwigia prostrata* Roxb. on the tumour induced mice.

Fig. 32. Comparative study of Mean Survival Time (MST) on tumour induced mice and the effect of 5FU and stem extract of *Ludwigia prostrata* Roxb. on the tumour induced mice.
Fig. 33. Comparative study of life span of tumour induced mice and the effect of 5FU and stem extract of *Ludwigia prostrata* Roxb. on the tumour induced mice

Fig. 34. Comparative study of Mean Survival Time (MST) on tumour induced mice and the effect of 5FU and Leaf extract of *Ludwigia prostrata* Roxb. on the tumour induced mice

Fig. 35. Comparative study of life span of tumour induced mice and the effect of 5FU and leaf extract of *Ludwigia prostrata* Roxb. on the tumour induced mice

Fig. 36. Comparative study of Mean Survival Time (MST) on tumour induced mice and the effect of 5FU and seed extract of *Ludwigia prostrata* Roxb. on the tumour induced mice

Fig. 37. Comparative study of life span of tumour induced mice and the effect of 5FU and seed extract of *Ludwigia prostrata* Roxb. on the tumour induced mice

Fig. 38. Comparative study of Mean Survival Time (MST) on tumour induced mice and the effect of 5FU and flavonoid of *Hibiscus vitifolius* Linn. on the tumour induced mice

Fig. 39. Comparative study of life span on tumour induced mice and the effect of 5FU and flavonoid of *Hibiscus vitifolius* Linn. on the tumour induced mice

Fig. 40. Bar graph showing the comparative total RBC count in tumour induced mice treated with the extracts of root, stem, leaf and seed of *Ludwigia prostrata* Roxb. and flavonoid of *Hibiscus vitifolius* Linn. with normal, tumour induced and 5FU treated mice

Fig. 41. Bar graph showing the Hb content in tumour induced mice treated with the extracts of root, stem, leaf and seed of *Ludwigia prostrata* Roxb. and flavonoid of *Hibiscus vitifolius* Linn. with normal, tumour induced and 5FU treated mice

Fig. 42. Bar graph showing the comparative total WBC count in tumour induced mice treated with the extracts of root, stem, leaf and seed of *Ludwigia prostrata* Roxb. and flavonoid of *Hibiscus vitifolius* Linn. with normal, tumour induced and 5FU treated mice

Fig. 43. Bar graph showing the PCV of the tumour induced mice treated with the extracts of root, stem, leaf and seed of *Ludwigia prostrata* Roxb.

Fig. 44. Bar graph showing the comparative protein content in tumour induced mice treated with the extracts of root, stem, leaf and seed of *Ludwigia prostrata* Roxb. and flavonoid of *Hibiscus vitifolius* Linn. with normal, tumour induced and 5FU treated mice and flavonoid of *Hibiscus vitifolius* Linn. with normal, tumour induced and 5FU treated mice
Fig. 45. Pie diagrams showing the percentage of differential count of Leucocytes, Neutrophils and Monocytes in normal mice, tumour control and 5FU treated mice.

Fig. 46. Pie diagrams showing the percentage of differential count of Leucocytes, Neutrophils and Monocytes in the tumour induced mice treated with root extracts of *Ludwigia prostrata* Roxb.

Fig. 47. Pie diagrams showing the percentage of differential count of Leucocytes, Neutrophils and Monocytes in the tumour induced mice treated with stem extracts of *Ludwigia prostrata* Roxb.

Fig. 48. Pie diagrams showing the percentage of differential count of Leucocytes, Neutrophils and Monocytes in the tumour induced mice treated with leaf extracts of *Ludwigia prostrata* Roxb.

Fig. 49. Pie diagrams showing the percentage of differential count of Leucocytes, Neutrophils and Monocytes in the tumour induced mice treated with seed extracts of *Ludwigia prostrata* Roxb.

Fig. 50. Pie diagrams showing the percentage of differential count of Leucocytes, Neutrophils and Monocytes in the tumour induced mice treated with flavonoid of *Hibiscus vitifolius* L.