<table>
<thead>
<tr>
<th>S. No.</th>
<th>Titles</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>CHAPTER 1</strong></td>
<td>1</td>
</tr>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Litter and Litter Decomposition</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Factors affecting Leaf Litter Decomposition</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Moisture</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Temperature</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Nitrogen Availability</td>
<td>4</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Indicators of Litter Decay Rates</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Litter Decomposition and Microorganisms</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td><strong>CHAPTER 2</strong></td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Review of Literature</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Litter Fall and Production</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Phylloplane Mycoflora</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Litter Mycoflora</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>a. Bryophytes and Pteridophytes</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>b. Gymnosperms</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>c. Angiosperms</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Litter Decomposition</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Environmental Factors on Litter Decomposition</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Climate</td>
<td>20</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Moisture</td>
<td>20</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Temperature</td>
<td>20</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Nitrogen</td>
<td>20</td>
</tr>
<tr>
<td>2.5.5</td>
<td>CO₂ Evolution</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td><strong>CHAPTER 3</strong></td>
<td>22</td>
</tr>
<tr>
<td>3.</td>
<td>Materials and Methods</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Study Area</td>
<td>24</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Vegetation</td>
<td>24</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Climate</td>
<td>24</td>
</tr>
</tbody>
</table>
CHAPTER 3

3.2 Methods

3.2.1 Selection and Collection of Materials
3.2.2 Litter fall rate analysis

3.3 Environmental Factors

3.3.1 Atmospheric Factors
3.3.2 Physico-chemical properties of the soil

3.4 Isolation of microflora

3.4.1 Air
3.4.2 Soil
3.4.3 Phylloplane

3.4.3.1 Direct Observation
   a. Damp Chamber incubation Method
   b. Scanning Electron Microscopic method
3.4.3.2 Culture technique
   a. Serial washing technique
   b. Disc plate method

3.5 Decomposition of leaf litter

3.5.1 Decomposition of leaf litter in the Natural habitat
3.5.2 Microbial activity in terms of CO₂ Evolution
3.5.3 Effect of Moisture on Decomposition of Leaf Litter
3.5.4 Effect of Temperature
3.5.5 Effect of Exogenous Nitrogen on Decomposition of leaf litter
3.5.6 Effect of Individual species of fungi on the decomposition of leaf litter

3.6 Statistical Analysis

CHAPTER 4

4. Results

4.1 Atmospheric Factors
4.2 Physico-Chemical properties of the Soil
4.3 Soil fungi (Dilution Plate technique)
4.4 Phylloplane

4.4.1. Direct Observation
   a. Damp chamber incubation method
   b. Scanning Electron Microscope method
4.4.2 Cultural method
   a. Serial washing techniques
(i) Green leaves (Plating of leaf washing) 38
(ii) Yellow leaves (Plating of leaf washing) 39
(iii) Brown leaves (Plating of leaf washing) 40
(iv) Broken litters (Plating of leaf washing) 41

b. Disc plate technique (Plating of washed leaf disc) 42
(i) Green leaves 42
(ii) Yellow leaves 42
(iii) Brown leaves 43
(iv) Broken litter 44

4.5 Litter fall rate 45

4.6 Leaf Litter Decomposition – Field Study (Nylon Mesh bag method) 47

4.6.1. Population dynamics of microorganisms of the soil during the period of decomposition 47

4.6.2. Population dynamics of microorganisms over the decomposing leaf litter 47
a. Plating of litter washing 47
   b. Plating of washed leaf bits (litter) 47

4.6.3 Loss in dry weight of buried leaf litter 48
4.6.4 Changes in Nutrient contents 48
4.6.5 Statistical analysis 49

4.7 Factors influencing the decomposition of leaf litter – Laboratory study 49

4.7.1 Population dynamics of microorganisms over the leaf litter under the influence of moisture 49
a. Soil microorganisms 49
b. Litter microorganisms 49
   (i) Litter washing 50
   (ii) Litter plating 50
c. Loss in dry weight 51
d. Nutrient content 51
e. CO₂ evolution 51
f. Statistical analysis 52

4.7.2 Population dynamics of microorganisms over the leaf litter under the influence of temperature 52
a. Soil microorganisms 52
b. Litter microorganisms 53
   (i) Litter washing 53
   (ii) Litter plating 54
c. Loss in dry weight 54
d. Nutrient content 54
e. CO₂ evolution 54
f. Statistical analysis 55

4.7.3 Population dynamics of microorganisms over the leaf litter under
the influence of wetting, drying & rewetting 55
a. Soil microorganisms 56
b. Litter microorganisms 56
   (i) Litter washing 57
   (ii) Litter plating 57
c. Loss in dry weight 57
d. Nutrient content 58
e. CO₂ evolution 58
f. Statistical analysis 58

4.7.4 Population dynamics of microorganisms over the leaf litter under
the influence of exogenous nitrogen 59
a. Soil microorganisms 59
b. Litter microorganisms 59
   (i) Litter washing 60
   (ii) Litter plating 60
c. Loss in dry weight 60
d. Nutrient content 61
e. CO₂ evolution 61
f. Statistical analysis 61

4.8. Effect of Individual species of fungi on the leaf litter 62
   a. CO₂ evolution 62
   b. Loss in dry weight 62

CHAPTER 5 63

Discussion 63
Summary 78
Appendix
References