CONTENTS

Acknowledgement i - ii

Contents iii - ix

List of Figures x – xiii

List of Tables xiv

CHAPTER - I INTRODUCTION

1.1 GENERAL 1

1.2 PREVIOUS WORK 2

1.2.1 International 3

1.2.1.1 Morphotectonics and morphodynamics of the coasts 3

1.2.1.2 Morphotectonics and morphodynamics: seismicities and other environmental hazards 8

1.2.1.3 Morphotectonics and morphodynamics: tsunami hazards 10

1.2.1.4 Morphotectonics and morphodynamics: flood hazards 13

1.2.2 National 14

1.2.2.1 Morphotectonics and morphodynamics of the coasts 14

1.2.2.2 Morphotectonics and morphodynamics: seismicities and other environmental hazards 24

1.2.2.3 Morphotectonics and morphodynamics: tsunami hazards 26

1.2.2.4 Morphotectonics and morphodynamics: flood hazards 30

1.3 GAPS AND THE SCOPE OF THE PRESENT RESEARCH 31

1.4 AIM AND OBJECTIVES 32

1.5 METHODOLOGY IN BRIEF 32

1.6 ABOUT THE STUDY AREA 33

1.6.1 Location and Accessibility 33

1.6.2 Physiography and Drainage 34

1.6.3 Geology 34

1.6.4 Geomorphology 35

1.6.5 Landuse / Land cover Architecture 35

1.6.6 Climate and Rainfall 35
1.7 SOCIO ECONOMIC SCENARIO 35
1.8 SYNTHESIS 36

CHAPTER – II MORPHOTECTONICS AND MORPHODYNAMICS OF TAMIL NADU COAST 37-72

2.1 GENERAL 37
2.2 LINEAMENTS 39
 2.2.1 Remote Sensing Based Lineament Mapping 39
 2.2.1.1 Using satellite FCC data 39
 2.2.1.2 Using SRTM DEM wrapped FCC data 39
 2.2.1.3 Using SRTM shaded relief data 40
 2.2.1.4 Deduction of lineaments 40
 2.2.2 Confirmation of Remote Sensing Lineaments using Geophysical Resistivity Data 40
 2.2.2.1 Resistivity DEM - 25 meter depth 42
 2.2.2.2 Resistivity DEM - 50 meter depth 42
 2.2.2.3 Resistivity DEM - 75 meter depth 42
 2.2.2.4 Resistivity DEM - 100 meter depth 43
 2.2.2.5 Deduction of geophysical lineaments 43
 2.2.3 Lineaments 43
2.3 GEOMORPHOLOGY 43
 2.3.1 Coastal Geometry 44
 2.3.2 Deltas 44
 2.3.2.1 Proto Palar delta 45
 2.3.2.2 Ponnaiyar delta 46
 2.3.2.3 Cauvery delta 48
 2.3.2.4 Vellar and Manimuttar deltas 51
 2.3.2.5 Vaigai delta 53
 2.3.2.6 Tambraparani delta 53
 2.3.2.7 Deltas and their morphotectonic significance 54
 2.3.2.8 Architecture of palaeo distributaries and its morphotectonic significance 54
2.3.3 Beach Ridges 56
2.3.4 Backwaters 59
2.3.5 Creeks 61
2.3.6 Bay Mouth Bars 61
2.3.7 Offshore Shoals / Sandbars / Islands 62
2.3.8 Spits / Protruding Deltas 63

2.4 100 YEARS OF GEOMORPHIC CHANGES 64
2.4.1 Changes in Pulicat Backwater 64
2.4.2 Preferential Withdrawal of Ennur and Kovalam Creeks 64
2.4.3 Changes in Coleroon Mouth 65
2.4.4 Changes in Vedaranniyam Backwater 66

2.5 MONSOONIC CHANGES IN GEOMORPHOLOGY 66
2.5.1 Changes in River and Backwater Mouths 66

2.6 DRAINAGE ANOMALIES 67
2.6.1 Deflected Drainages 67
2.6.2 Eyed Drainages 68
2.6.3 Compressed Meanders 68

2.7 MORPHOTECTONIC AND MORPHODYNAMIC SCENARIO 69

2.8 SYNTHESIS 71

CHAPTER III - MORPHOTECTONICS AND MORPHODYNAMICS: SEISMICITIES AND OTHER ENVIRONMENTAL HAZARDS 73-80

3.1 GENERAL 73
3.2 SEISMICITIES 73
3.3 ENVIRONMENTAL HAZARDS 74
3.3.1 River Rejuvenation / Soil Erosion 74
3.3.2 Reservoir Siltation 75
3.3.3 Sediment Discharge into Ocean 76
3.3.4 Offshore Sandbars Building 77
3.3.5 Backwater Degradation 77
3.3.6 Creek Degradation 78
CHAPTER IV - MORPHOTECTONICS AND MORPHODYNAMICS: TSUNAMI HAZARDS

4.1 GENERAL
4.2 ORIGIN OF TSUNAMIS
4.3 TRIGGERING MECHANISM OF INDIAN OCEAN TSUNAMI (2004)
4.4 IMPRINTS OF TSUNAMI (2004)
 4.4.1 Imprints
 4.4.2 Run up Mapping
 4.4.3 Inundation Mapping
 4.4.3.1 ENVISAT based mapping
 4.4.3.2 Ortho photo based mapping
 4.4.3.3 Field based mapping
 4.4.3.4 Assessment of imprints / damages
 4.4.3.4.1 Land resources damage
 (a) Breakage of bay mouth bars
 (b) Flattening of beaches
 (c) Tsunami cut terraces in the rivers
 (d) Damages of agriculture fields
 4.4.3.4.2 Water resources damage
 (a) Inundation of water bodies
 (b) Wetland damages
 (c) Groundwater damages
 4.4.3.4.3 Physical resources damage

4.5 TSUNAMI MODELING AND MITIGATION
 4.5.1 Methodology
 4.5.2 Tsunami Trails and Coastal Geometry
4.5.3 Spatial modeling between Tsunami Inundation and Coastal Geomorphology

4.5.3.1 GIS database on tsunami inundation

4.5.3.2 GIS database on geomorphology

4.5.3.3 Interface dynamics between tsunami and geomorphology

4.5.3.4 Interface dynamics based tsunami mitigation

4.5.3.4.1 Facilitators

(a) Bay mouth bars, rivers and creek mouths

(b) Mudflats and salt pans

4.5.3.4.2 Carriers

4.5.3.4.3 Accommodators

4.5.3.4.4 Absorbers

4.5.3.4.5 Barriers

4.5.4 Linear Modeling

4.5.4.1 Tsunami run up vs offshore geosystems

4.5.4.1.1 Numerical database on run up

(a) Sampling segments

(b) Database on run up

4.5.4.1.2 Numerical database on offshore geosystems

(a) Offshore geosystem scenario

(b) Database on offshore geosystems

4.5.4.1.3 Factor modeling: run up vs offshore geosystems

(a) Data normalisation

(b) Factor varimax analysis

4.5.4.2 Tsunami inundation vs coastal geosystems

4.5.4.2.1 Numerical database on inundation

4.5.4.2.2 Numerical database on coastal geosystems
(a) On geomorphology 110
(b) On landuse / land cover 111
(c) Integrated geomorphology and landuse / land cover 111

4.5.4.2.3 Factor modeling: inundation vs coastal geosystems 115
(a) Eigenvalues 115
(b) Eigenvectors 116
(c) Impact of coastal geosystems over inundation 117

4.6 SYNTHESIS 119

CHAPTER - V MORPHOTECTONICS AND MORPHODYNAMICS: FLOOD HAZARDS 121-135

5.1 GENERAL 121
5.2 METHODOLOGY IN BRIEF 122
5.3 FLOOD HAZARD MAPPING 122
 5.3.1 Using Collateral Data 122
 5.3.2 Using MODIS satellite Data 123
 5.3.3 GIS Database on Floods 2005 123
5.4 SOURCES OF FLOOD 125
5.5 FLOODS Vs MORPHOTECTONIC-MORPHODYNAMIC GRAINS 125
 5.5.1 Active Tectonics and Floods 125
 5.5.2 Drainage Density and Floods 128
 5.5.3 Drainage Anomalies and Floods 128
 5.5.4 Geomorphology and Floods 129
 5.5.5 Landuse / Land Cover and Floods 130
 5.5.6 Groundwater Level and Floods 130
 5.5.7 Status of Groundwater Exploitation and Floods 131
5.6 MITIGATION STRATEGIES 132
 5.6.1 Floods Controlled by Tectonics 132
 5.6.2 In Zones of Least Drainages 132
5.6.3 In Zones of Drainage Anomalies 133
5.6.4 In Zones of Bay Mouth Bars 133
5.6.5 In Zones of Geomorphology and Landuse / Land Cover 134
5.6.6 In Zones of Shallow Groundwater Level 134

5.7 SYNTHESIS 134

CHAPTER VI SUMMARY, DISCUSSION AND CONCLUSION 136-143

6.1 SUMMARY 136
6.2 DISCUSSION 140
6.3 CONCLUSION 143

REFERENCES 144-165