CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER I</th>
<th>INTRODUCTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>STATE OF ART</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>General Groundwater Studies</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1.1</td>
<td>International Status</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1.2</td>
<td>National Status</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Numerical / Statistical Modelling</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>International Status</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>National Status</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3</td>
<td>GIS Modelling</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3.1</td>
<td>International Status</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>National Status</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>ETHICS OF THE PRESENT RESEARCH</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>STUDY AREA</td>
<td>11</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Location</td>
<td>11</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Physiography and Drainage</td>
<td>12</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Geology</td>
<td>13</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Structure</td>
<td>14</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Geomorphology</td>
<td>15</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Aquifer Conditions</td>
<td>16</td>
</tr>
<tr>
<td>1.5</td>
<td>AIMS AND OBJECTIVES</td>
<td>16</td>
</tr>
</tbody>
</table>
METHODOLOGY IN BRIEF

1.6.1 Data Base Generation

1.6.2 Thematic Modelling

1.6.3 Numerical / Statistical Modelling

1.6.4 GIS modelling

SYNTHESIS

CHAPTER II THEMATIC MODELLING

2.1 GENERAL

2.2 DATA BASE GENERATION

2.2.1 Data Base on Structural Parameters

2.2.1.1 Interval Between Laminations

2.2.1.2 Interval Between Joints

2.2.1.3 Lineament Density

2.2.2 Data Base on Geomorphological Parameters

2.2.2.1 Geomorphic Grade

2.2.2.2 Drainage Density

2.2.2.3 Slope

2.2.2.4 Infiltration Rate

2.2.3 Data Base on Subsurface Geological Parameters

2.2.3.1 Thickness of Soil

2.2.3.2 Thickness of Weathered Zone

2.2.3.3 Thickness of Fractured Zone

2.2.3.4 Depth to Bed Rock
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.4</td>
<td>Data Base on Aquifer Characteristics</td>
<td>26</td>
</tr>
<tr>
<td>2.2.4.1</td>
<td>Pumping Tests and Evaluation of Aquifer Characteristics</td>
<td>27</td>
</tr>
<tr>
<td>2.2.4.2</td>
<td>Water Level Mean</td>
<td>29</td>
</tr>
<tr>
<td>2.2.4.3</td>
<td>Width of Aquifer Depletion</td>
<td>30</td>
</tr>
<tr>
<td>2.2.4.4</td>
<td>Storage Coefficient</td>
<td>30</td>
</tr>
<tr>
<td>2.2.4.5</td>
<td>Specific Capacity</td>
<td>31</td>
</tr>
<tr>
<td>2.2.4.6</td>
<td>Transmissivity</td>
<td>32</td>
</tr>
<tr>
<td>2.2.4.7</td>
<td>Permeability</td>
<td>33</td>
</tr>
<tr>
<td>2.2.4.8</td>
<td>Optimum Yield</td>
<td>33</td>
</tr>
<tr>
<td>2.2.4.9</td>
<td>Recovery Rate</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>DATA GROUPING AND GENERATION OF THEMATIC DATA BASES</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Data Modification</td>
<td>34</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Thematic Data Base on Structural Parameters</td>
<td>37</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Thematic Data Base on Geomorphological Parameters</td>
<td>38</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Thematic Data Base on Subsurface Geological Parameters</td>
<td>38</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Thematic Data Base on Aquifer Characteristics</td>
<td>39</td>
</tr>
<tr>
<td>2.3.5.1</td>
<td>Water Level Mean</td>
<td>39</td>
</tr>
<tr>
<td>2.3.5.2</td>
<td>Width of Aquifer Depletion</td>
<td>39</td>
</tr>
<tr>
<td>2.3.5.3</td>
<td>Storage Coefficient</td>
<td>40</td>
</tr>
<tr>
<td>2.3.5.4</td>
<td>Specific Capacity</td>
<td>40</td>
</tr>
<tr>
<td>2.3.5.5</td>
<td>Transmissivity</td>
<td>40</td>
</tr>
<tr>
<td>2.3.5.6</td>
<td>Permeability</td>
<td>40</td>
</tr>
<tr>
<td>2.3.5.7</td>
<td>Optimum Yield</td>
<td>40</td>
</tr>
<tr>
<td>2.3.5.8</td>
<td>Recovery Rate</td>
<td>41</td>
</tr>
<tr>
<td>2.3.5.9</td>
<td>Overall Aquifer Condition</td>
<td>41</td>
</tr>
</tbody>
</table>
2.4 THEMATIC MODELLING

2.4.1 Ethics Followed

2.4.2 Functions of Water Level

2.4.3 Functions of Aquifer Depletion

2.4.4 Functions of Storage Coefficient

2.4.5 Functions of Specific Capacity

2.4.6 Functions of Transmissivity

2.4.7 Functions of Permeability

2.4.8 Functions of Optimum Yield

2.4.9 Functions of Recovery Rate

2.4.10 Overall Aquifer Function Model

2.5 SYNTHESIS

CHAPTER III NUMERICAL / STATISTICAL MODELLING

3.1 GENERAL

3.2 GENERATION OF NUMERICAL DATA BASES

3.2.1 Structural Parameters

3.2.2 Geomorphological Parameters

3.2.3 Subsurface Geological Parameters

3.2.4 Aquifer Characteristic Parameters

3.3 NUMERICAL / STATISTICAL MODELLING

3.3.1 Methodology

3.3.2 Functions of Water Level

3.3.3 Functions of Aquifer Depletion

3.3.4 Functions of Storage Coefficient

3.3.5 Functions of Specific Capacity

3.3.6 Functions of Transmissivity

3.3.7 Functions of Permeability
3.3.8 Functions of Optimum Yield 58
3.3.9 Functions of Recovery Rate 59
3.3.10 Functions of Overall Aquifer Condition 59

3.4 SYNTHESIS 60

CHAPTER IV GIS MODELLING

4.1 GENERAL 61

4.2 GRAM - GIS PACKAGE AND ITS CAPABILITIES 61
4.2.1 Hardware Components 61
4.2.2 Software Components 62
4.2.2.1 Input Module 62
4.2.2.2 Attribute Link Module 62
4.2.2.3 Analysis Module 62
4.2.2.4 DTM Module 63
4.2.2.5 Image Processing Module 63
4.2.2.6 Print Module 63

4.3 DATA INPUT 63
4.3.1 Digitisation of Base Map 64
4.3.2 Digitisation of Well Locations 65
4.3.3 Entry of Non-Spatial Attribute 65

4.4 GENERATION OF RASTER IMAGES / DATA BASES 66

4.5 GENERATION OF BINARY CLASSIFIED RASTER IMAGES 67
4.5.1 Structural Parameters 68
4.5.1.1 Interval Between Laminations 68
4.5.1.2 Interval Between Joints 69
4.5.1.3 Lineament Density 69
4.5.1.4 Hybrid / Regrouped Image on Structural Parameters 69
4.5.2 Geomorphological Parameters 70
 4.5.2.1 Geomorphic Grade 70
 4.5.2.2 Drainage Density 70
 4.5.2.3 Slope 71
 4.5.2.4 Infiltration Rate 71
 4.5.2.5 Regrouped Raster Image on Geomorphological Parameters 71

4.5.3 Subsurface Geological Parameters 72
4.5.4 Aquifer Characteristics Data 72

4.6 GIS MODELLING 74
 4.6.1 Methodology of Map Overlaying 74
 4.6.2 Functions of Water Level 76
 4.6.3 Functions of Aquifer Depletion 78
 4.6.4 Functions of Storage Coefficient 80
 4.6.5 Functions of Specific Capacity 81
 4.6.6 Functions of Transmissivity 82
 4.6.7 Functions of Permeability 82
 4.6.8 Functions of Optimum Yield 83
 4.6.9 Functions of Recovery Rate 83
 4.6.10 Overall Aquifer Function Model 83

4.7 SYNTHESIS 84
CHAPTER V COMPARATIVE EVALUATION AND DISCUSSION

5.1 GENERAL 85

5.2 COMPARATIVE EVALUATION 85

5.2.1 Functions of Water Level 86
5.2.2 Functions of Aquifer Depletion 88
5.2.3 Functions of Storage Coefficient 90
5.2.4 Functions of Specific Capacity 92
5.2.5 Functions of Transmissivity 93
5.2.6 Functions of Permeability 93
5.2.7 Functions of Optimum Yield 94
5.2.8 Functions of Recovery Rate 94
5.2.9 Overall Aquifer Function Model 95

5.3 SYNTHESIS 95

CHAPTER VI OTHER MERITS OF GIS

6.1 INTRODUCTION 97
6.2 DATA STORAGE 97
6.3 SELECTIVE RETRIEVAL OF DATA 97
6.4 CONTOURING OF DATA 98
6.5 BUFFERING 98
6.6 CLASSIFICATION 98
6.7 PERSPECTIVE VISION 98
6.8 ARITHMATIC MANIPULATION 99

6.8.1 Addition 99
6.8.2 Substraction and Other Manipulations 99
6.9 MAP OVERLAYING
 6.9.1 Conditional Overlaying Technique 99
 6.9.2 Simple Overlaying Technique 101

6.10 SYNTHESIS 101

CHAPTER VII RESULTS AND CONCLUSIONS 102

BIBLIOGRAPHY 109

ANNEXURE I AQUIFER PARAMETERS EVALUATION (APE) PROGRAMME

ANNEXURE II TYPICAL OUTPUT - APE PUMPING TEST