Chapter 4

Fuzzy finite state subautomaton and Homomorphism

4.1 Introduction

This chapter begins with the definition of sub uffsa’s of a given uffsa \(M = (Q, \Sigma, \mu, i, f) \), which are uffsa’s and as set of states they are subsets of \(Q \) with restriction mappings \(\mu', i' \) and \(f' \). This is closed under intersection and union. It is interesting to note that if \(M_1 \) is a sub uffsa of the uffsa \(M \), then \(F(M) \) is a homomorphic image of \(F(M_1) \).

This chapter then deals with homomorphism of uffsa’s. We prove that if \((\alpha, \beta) : M_1 \rightarrow M_2 \) is a homomorphism then \(L_1(x) \leq L_2(\beta^*(x)) \forall x \in \Sigma_1^* \). However if \(\beta \) is the identity map then \(L_1 \subseteq L_2 \). Moreover if \((\alpha, \beta) \) is a strong homomorphism and \(\alpha \) is bijective then \(L_1(x) = L_2(\beta^*(x)) \forall x \in \Sigma_1^* \). We also
prove that if M_1 and M_2 are strong isomorphic as uffsas, then $F(M_1)$ and $F(M_2)$ are isomorphic as monoids. Admissible relation on the set of states of fism is discussed in [28]. Admissible relation on the set of states of uffsa is suitably defined and characterized in this chapter. Corresponding to each admissible relation on an uffsa M, there exists a fuzzy function μ_1 and it constructs an uffsa M_1, such that M and M_1 are strong homomorphic.

4.2 Sub uffsa

In this section we define sub uffsa and prove some results on it. For the basis we refer to [35].

Definition 4.2.1.

Let $M = (Q, \Sigma, \mu, i, f)$ be an uffsa. Let $p, q \in Q$, p is called an immediate successor of q if there exists an $a \in \Sigma$ such that $\mu(q, a, p) > 0$. If p is an immediate successor of q and q is an immediate successor or r, then p is a successor of r.

Proposition 4.2.2. Let $M = (Q, \Sigma, \mu, i, f)$ be an uffsa. Let $q, p, r \in Q$. Then the following assertions hold:

(i) q is a successor of q.

(ii) If p is a successor of q and r is a successor p, then r is a successor of q.

Definition 4.2.3.

Let $M = (Q, \Sigma, \mu, i, f)$ be an uffsa and let $q \in Q$. We denote by $S(q)$ the set of all successors of q.

4.2 Sub uffsa

Definition 4.2.4.
Let $M = (Q, \Sigma, \mu, i, f)$ be an uffsa and let $T \subseteq Q$. The set of successors of T, denoted by $S(T)$ in Q, is defined to be the set $S(T) = \bigcup \{ S(q) \mid q \in T \}$.

Definition 4.2.5.
Let $M = (Q, \Sigma, \mu, i, f)$ be an uffsa and $T \subseteq Q$. Let $N = (T, \Sigma, \mu', i', f')$.
N is called a sub uffsa of M if

(i) $S(T) \subseteq T$,

(ii) μ' is a restriction of μ on $T \times \Sigma \times T$,

(iii) i' is a restriction of i on T and

(iv) f' is a restriction of f on T.

Note 4.2.6. If K is a sub uffsa of N and N is a sub uffsa of M, then K is a sub uffsa of M.

Theorem 4.2.7.
Let $M = (Q, \Sigma, \mu, i, f)$ be an uffsa. Let $M_j = (Q_j, \Sigma, \mu_j, i_j, f_j), j \in I$, be a family of sub uffsa's of M. Then $\bigcap M_j$ is a sub uffsa of M.

Proof. Define the uffsa $\bigcap M_j = (\bigcap Q_j, \Sigma, \bigcap \mu_j, \bigcap i_j, \bigcap f_j)$

Let $(p, a, q) \in \bigcap Q_j \times \Sigma \times \bigcap Q_j, p, q \in Q, a \in \Sigma$

$(\bigcap \mu_j)(p, a, q) = \bigwedge_{j \in I} \{ \mu_j(p, a, q) \} = \mu(p, a, q)$

Thus $\bigcap \mu_j$ is a restriction of μ.

Let $p \in \bigcap Q_j$. Now $(\bigcap i_j)(p) = \bigwedge_{j \in I} \{ i_j(p) \} = i(p)$
Therefore $\bigcap i_j$ is a restriction of i.

79
4.2 Sub uffsa

\[(\bigcap_{j \in I} f_j)(p) = \bigwedge_{j \in I} \{f_j(p)\} = f(p)\]

Therefore \(\bigcap_{j \in I} f_j\) is a restriction of \(f\).

Clearly \(S(\bigcap_{j \in I} Q_j) \subseteq \bigcap_{j \in I} S(Q_j) \subseteq \bigcap_{j \in I} Q_j\)

Therefore \(\bigcap_{j \in I} M_j\) is a sub uffsa of \(M\).

Theorem 4.2.8.

Let \(M = (Q, \Sigma, \mu, i, f)\) be an uffsa. Let \(M_j = (Q_j, \Sigma, \mu_j, i_j, f_j), j \in I,\) be a family of sub uffsa’s of \(M\). Then \(\bigcup_{j \in I} M_j\) is a sub uffsa of \(M\).

Proof. Define \(\bigcup_{j \in I} M_j = (\bigcup_{j \in I} Q_j, \Sigma, \mu', i', f')\), where

\(\mu'\) is a restriction of \(\mu\) on \(\bigcup_{j \in I} Q_j \times \Sigma \times \bigcup_{j \in I} Q_j\)

\(i'\) is a restriction of \(i\) on \(\bigcup_{j \in I} Q_j\)

\(j'\) is a restriction of \(j\) on \(\bigcup_{j \in I} Q_j\)

Now \(S(\bigcup_{j \in I} Q_j) = \bigcup_{j \in I} S(Q_j) \subseteq \bigcup_{j \in I} Q_j\)

Thus \(\bigcup_{j \in I} M_j\) is a sub uffsa of \(M\).

Theorem 4.2.9.

The fuzzy regular language accepted by a sub uffsa \(M_1\) of an uffsa \(M\) is contained in the fuzzy regular language accepted by \(M\).

Proof. Let \(M = (Q, \Sigma, \mu, i, f)\) be an uffsa with fuzzy regular language \(L\).

Let \(M_1 = (Q_1, \Sigma, \mu_1, i_1, f_1)\) be a sub uffsa of \(M\) with fuzzy regular language \(L_1\).

Now we prove, \(L_1 \subseteq L\).

Let \(x \in \Sigma^*\), \(L_1(x) = \bigvee\{i_1(p) \wedge \mu_1^* (p, x, q) \wedge f_1(q) \mid q \in Q_1 \mid p \in Q_1\}\)

80
4.2 Sub uffsa

Since $Q_1 \subseteq Q$, $\sigma_1 = \sigma$, $i_1 = i$ and $f_1 = f$ on Q_1,

$$L_1(x) \leq \vee \{i(p) \wedge \mu^*(p, x, q) \wedge f(q) \mid q \in Q \mid p \in Q\} = L(x).$$

Therefore $L_1 \subseteq L$. Hence the theorem.

Theorem 4.2.10.

If M_1 is a sub uffsa of the uffsa M, then the monoid $F(M)$ is a homomorphic image of the monoid $F(M_1)$.

Proof. Let $M = (Q, \Sigma, \sigma, i, f)$ be the uffsa and $M_1 = (Q_1, \Sigma, \sigma_1, i_1, f_1)$ be a sub uffsa of M.

$F(M) = \{f_x \mid x \in \Sigma^*\}$ and $F(M_1) = \{f_x^{(1)} \mid x \in \Sigma^*\}$ where

$f_x : Q \to Q$ and $f_x^{(1)} : Q_1 \to Q_1$, f_x, $f_x^{(1)}$ are as in Definition 3.2.1.

Define $\phi : F(M_1) \to F(M)$ such that $\phi(f_x^{(1)}) = f_x$, $x \in \Sigma^*$.

We show that ϕ is well defined.

Let $f_x^{(1)}$, $f_y^{(1)} \in F(M_1)$ and $f_x^{(1)} = f_y^{(1)}$.

Therefore $f_x^{(1)}(p) = f_y^{(1)}(p)$ $\forall p \in Q_1$. From the definition of sub uffsa, for each symbol a in the string x, if there is a transition with nonzero membership value then all transitions on a which are in M are also in M_1 and

$\sigma_1(p, a, q) = \sigma(p, a, q)$ $\forall p, q \in Q_1$, $a \in \Sigma$.

Therefore, $f_x(p) = f_y(p)$ $\forall p \in Q$, implies that $f_x = f_y$.

Thus ϕ is well defined.

Next we show that, ϕ is a homomorphism of monoids.

Let $f_x^{(1)}$, $f_y^{(1)} \in F(M_1)$.

Now $\phi(f_x^{(1)} \circ f_y^{(1)}) = \phi(f_{yx}) = f_x \circ f_y = \phi(f_x^{(1)}) \circ \phi(f_y^{(1)})$.

81
4.3 Homomorphism

Also \(\phi(f_x^{(1)}) = f_\lambda, f_\lambda^{(1)} \in F(M_1) \) and \(f_\lambda \in F(M) \) are the identity elements.
Therefore \(\phi \) is a homomorphism.

Finally we prove \(\phi \) is onto. Let \(y \in F(M) \). Then \(y = f_x \), for some \(x \in \Sigma^* \).
Therefore \(f_x^{(1)} \in F(M_1) \) and we have \(\phi(f_x^{(1)}) = f_x \).
Hence \(F(M) \) is a homomorphic image of \(F(M_1) \).

\[\begin{align*}
\text{Note 4.2.11.} \text{ Number of elements in } F(M) \text{ is less than or equal to the number of elements in } F(M_1).
\end{align*}\]

4.3 Homomorphism

This section includes the definition of homomorphism (strong) of uffsa’s followed by examples and some significant results. For the definition of homomorphism of ffsa’s, we refer to [28, 38].

Definition 4.3.1.

Let \(M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1) \) and \(M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2) \) be two uffsa’s.

A pair \((\alpha, \beta) \) of mappings \(\alpha : Q_1 \rightarrow Q_2 \) and \(\beta : \Sigma_1 \rightarrow \Sigma_2 \), is called a **homomorphism**, written \((\alpha, \beta) : M_1 \rightarrow M_2 \), if

\[\begin{align*}
(i) \quad &\mu_1(p, a, q) \leq \mu_2(\alpha(p), \beta(a), \alpha(q)) \forall p, q \in Q_1 \text{ and } \forall a \in \Sigma_1 \\
(ii) \quad &i_1(p) \leq i_2(\alpha(p)) \forall p \in Q_1 \\
(iii) \quad &f_1(p) \leq f_2(\alpha(p)) \forall p \in Q_1 \\
\end{align*}\]

The pair \((\alpha, \beta) \) is called a **strong homomorphism** if

\[\begin{align*}
(iv) \quad &\mu_2(\alpha(p), \beta(a), \alpha(q)) = \vee \{ \mu_1(p, a, t) \mid t \in Q_1, \alpha(t) = \alpha(q) \} \\
&\forall p, q \in Q_1 \text{ and } \forall a \in \Sigma_1
\end{align*}\]
4.3 Homomorphism

Further, if \(\alpha(p) = \alpha(q) \) then

\[
\mu_2(\alpha(p), \beta(a), \alpha(q)) = \vee \{ \mu(s, a, t) \mid \alpha(t) = \alpha(q), \alpha(s) = \alpha(p) \}
\]

(v) \(i_2(\alpha(p)) = \vee \{ i_1(t) \mid t \in Q_1, \alpha(t) = \alpha(p) \} \)

(vi) \(f_2(\alpha(p)) = \vee \{ f_1(t) \mid t \in Q_1, \alpha(t) = \alpha(p) \} \)

A homomorphism (strong homomorphism) \((\alpha, \beta) : M_1 \rightarrow M_2\) is called an isomorphism (strong isomorphism) if \(\alpha\) and \(\beta\) are both one-one and onto.

Definition 4.3.2.

If \(\Sigma_1 = \Sigma_2\) and \(\beta\) is the identity map, then we write simply \(\alpha : M_1 \rightarrow M_2\) and say that \(\alpha\) is a homomorphism or strong homomorphism accordingly.

Further, if \((\alpha, \beta)\) is a strong homomorphism with \(\alpha\) one-one, then

\[
\mu_2(\alpha(p), \beta(a), \alpha(q)) = \mu_1(p, a, q), \forall p, q \in Q_1\text{ and } \forall a \in \Sigma_1.
\]

Example 4.3.3.

Let \(M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1)\) and \(M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2)\) be usfa’s, where

\(Q_1 = \{ q_0, q_1, q_2 \}, \Sigma_1 = \{ a, b \}, Q_2 = \{ q_0', q_1', q_2' \}, \Sigma_2 = \{ a, b \},\) and

\(\mu_1, \mu_2, i_1, i_2, f_1\) and \(f_2\) are defined as follows:

\[
\begin{align*}
\mu_1 : Q_1 \times \Sigma_1 \times Q_1 & \rightarrow [0,1] \text{ by } \\
\mu_1(q_0, a, q_0) &= 0.3 \\
\mu_1(q_0, a, q_1) &= 0.5 \\
\mu_1(q_0, a, q_1) &= 0.7 \\
\mu_1(q_1, a, q_0) &= 0.6 \\
\mu_2 : Q_2 \times \Sigma_2 \times Q_2 & \rightarrow [0,1] \text{ by } \\
\mu_2(q_0', a, q_0') &= 0.4 \\
\mu_2(q_0', a, q_1') &= 0.5 \\
\mu_2(q_0', b, q_1') &= 0.7 \\
\mu_2(q_1', a, q_0') &= 0.7
\end{align*}
\]

83
4.3 Homomorphism

\[
\begin{align*}
\mu_1(g_1, b, q_1) &= 0.4 & \mu_2(g'_1, b, q'_1) &= 0.5 \\
\mu_1(g_1, b, q_2) &= 0.6 & \mu_2(g'_1, b, q'_2) &= 0.8 \\
\mu_1(q_2, a, q_1) &= 0.5 & \mu_2(q'_2, a, q'_1) &= 0.5 \\
\mu_1(q_2, b, q_2) &= 0.6 & \mu_2(q'_2, b, q'_2) &= 0.7
\end{align*}
\]

\(i_1 : Q_1 \rightarrow [0, 1]\) such that \(i_1(q_0) = 0.8\), \(i_1(q_1) = 0.5\).

\(i_2 : Q_2 \rightarrow [0, 1]\) such that \(i_2(q'_0) = 0.9\), \(i_2(q'_1) = 0.5\), \(i_2(q'_2) = 0.1\).

\(f_1 : Q_1 \rightarrow [0, 1]\) by \(f_1(q_2) = 0.8\).

\(f_2 : Q_2 \rightarrow [0, 1]\) by \(f_2(q'_2) = 0.8\).

Define \(\alpha : Q_1 \rightarrow Q_2\) by \(\alpha(q_0) = q'_0\), \(\alpha(q_1) = q'_1\), \(\alpha(q_2) = q'_2\)

and \(\beta : \Sigma_1 \rightarrow \Sigma_2\) by \(\beta(a) = a\), \(\beta(b) = b\).

Clearly \((\alpha, \beta)\) is a homomorphism from \(M_1\) into \(M_2\). Since \(\alpha\) and \(\beta\) are bijective, \((\alpha, \beta)\) is an isomorphism of uffsa’s.

Example 4.3.4.

Let \(M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1)\) and \(M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2)\) be uffsa’s. \(M_1\) is defined as in Example 4.3.3, \(Q_2 = \{q'_0, q'_2\}\), \(\Sigma_2 = \{0, 1\}\).

\(\mu_2 : Q_2 \times \Sigma_2 \times Q_2 \rightarrow [0, 1]\) is defined as follows:

\[
\begin{align*}
\mu_2(q'_0, 0, q'_0) &= 0.6 & \mu_2(q'_0, 0, q'_6) &= 0.5 \\
\mu_2(q'_0, 1, q'_0) &= 0.7 & \mu_2(q'_2, 1, q'_2) &= 0.6 \\
\mu_2(q'_0, 1, q'_2) &= 0.6 &
\end{align*}
\]

\(i_2 : Q_2 \rightarrow [0, 1]\) is defined by \(i_2(q'_0) = 0.8\).

\(f_2 : Q_2 \rightarrow [0, 1]\) is defined by \(f_2(q'_2) = 0.8\).

Define \(\alpha : Q_1 \rightarrow Q_2\) by \(\alpha(q_0) = \alpha(q_1) = q'_0\), \(\alpha(q_2) = q'_2\).
4.3 Homomorphism

and $\beta : \Sigma_1 \to \Sigma_2$ by $\beta(a) = 0, \beta(b) = 1$.

Clearly (α, β) is a strong homomorphism of uffsa's.

Lemma 4.3.5.

Let $M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1)$ and $M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2)$ be uffsa's. Let $(\alpha, \beta) : M_1 \to M_2$ be a strong homomorphism. Then $\forall q, r \in Q_1, \forall a \in \Sigma_1$ if $\mu_2 (\alpha(p), \beta(a), \alpha(r)) > 0$, then there exists $t \in Q_1$ such that $\mu_1 (p, a, t) > 0$ and $\alpha(t) = \alpha(r)$. Further more, $\forall p \in Q_1$ if $\alpha(p) = \alpha(q)$, then $\mu_1 (p, a, t) \geq \mu_1 (q, a, r)$.

Proof. Let $p, q, r \in Q_1, a \in \Sigma_1$ and $\mu_2 (\alpha(p), \beta(a), \alpha(r)) > 0$. But $\mu_2 (\alpha(p), \beta(a), \alpha(r)) = \cup \{ \mu_1 (p, a, t) | \alpha(t) = \alpha(r) \}.$

Since Q_1 is finite, there exists $t \in Q_1$ such that $\alpha(t) = \alpha(r)$ and $\mu_2 (\alpha(p), \beta(a), \alpha(r)) = \mu_1 (p, a, t) > 0$.

Suppose $\alpha(p) = \alpha(q)$, then

$$
\mu_1 (p, a, t) = \mu_2 (\alpha(p), \beta(a), \alpha(r)) = \mu_2 (\alpha(q), \beta(a), \alpha(r)) \geq \mu_1 (q, a, r)
$$

Definition 4.3.6.

Let $M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1)$ and $M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2)$ be uffsa's and let $\beta : \Sigma_1 \to \Sigma_2$ be a map. Define $\beta^* : \Sigma_1^* \to \Sigma_2^*$ by

(i) $\beta^*(\lambda) = \beta(\lambda) = \lambda$

(ii) $\beta^*(a_1a_2 \ldots a_n) = \beta(a_1) \beta(a_2) \ldots \beta(a_n), n \geq 0, a_1, a_2, \ldots, a_n \in \Sigma_1$.

85
Lemma 4.3.7.

\[\beta^*(xy) = \beta^*(x)\beta^*(y) \quad \forall x, y \in \Sigma_1^* \]

Proof. Let \(x, y \in \Sigma_1^* \), \(x = a_1a_2 \cdots a_n, \ y = b_1b_2 \cdots b_m, \ n, m \geq 1 \).

Now \(\beta^*(xy) = \beta^*(a_1a_2 \cdots a_nb_1b_2 \cdots b_m) \)
\[= \beta(a_1)\beta(a_2) \cdots \beta(a_n)\beta(b_1)\beta(b_2) \cdots \beta(b_m) \]
\[= \beta^*(a_1a_2 \cdots a_n)\beta^*(b_1b_2 \cdots b_m) \]
\[= \beta^*(x)\beta^*(y) \]

Lemma 4.3.8.

Let \(M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1) \) and \(M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2) \) be ufsa’s and let \((\alpha, \beta) : M_1 \rightarrow M_2 \) be a homomorphism. Then

(i) \(\mu_1^*(p, x, q) \leq \mu_2^*(\alpha(p), \beta^*(x), \alpha(q)) \quad \forall x \in \Sigma_1^*, \ p, q \in Q_1 \)

(ii) \(i_1(p) \leq i_2(\alpha(p)) \quad \forall p \in Q_1 \)

(iii) \(f_1(p) \leq f_2(\alpha(p)) \quad \forall p \in Q_1 \)

Proof. First we prove (i). Let \(p, q \in Q_1 \) and \(x \in \Sigma_1^* \). We prove the result by induction on \(|x| = n \).

Let \(n = 0 \), then \(x = \lambda, \ \beta^*(x) = \beta^*(\lambda) = \lambda \).
If \(p = q, \ \mu_1(p, \lambda, q) = 1 = \mu_2(\alpha(p), \lambda, \alpha(q)) \)
If \(p \neq q, \ \mu_1(p, \lambda, q) = 0 \leq \mu_2(\alpha(p), \lambda, \alpha(q)) \)

Suppose the result is true for all \(x \in \Sigma_1^* \) such that \(|x| \leq n - 1, n > 0 \).
4.3 Homomorphism

Let $|x| = n$, $x = ya$, where $y \in \Sigma_1^*$, $a \in \Sigma_1$ and $|y| = n - 1$.

Now $\mu^*_1(p, x, q) = \mu^*_1(p, ya, q)$

$= \vee \{\mu^*_1(p, y, r) \land \mu_1(r, a, q) \mid r \in Q_1\}$

$\leq \vee \{\mu^*_2(\alpha(p), \beta^*(y), \alpha(r)) \land \mu_2(\alpha(r), \beta(a), \alpha(q)) \mid r \in Q_1\}$

$\leq \vee \{\mu^*_2(\alpha(p), \beta^*(y), r') \land \mu_2(r', \beta(a), \alpha(q)) \mid r' \in Q_2\}$

$= \mu_2(\alpha(p), \beta^*(y), \alpha(q))$

$= \mu^*_2(\alpha(p), \beta^*(x), \alpha(q))$

Thus the result is true for $|x| = n$. Hence (i).

(ii) and (iii) immediately follow from the definition.

Theorem 4.3.9.

Let $M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1)$ and $M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2)$ be uffa's with L_1 and L_2 be the fuzzy languages accepted by M_1 and M_2 respectively. Let $(\alpha, \beta) : M_1 \to M_2$ be a homomorphism. Then $L_1(x) \leq L_2(\beta^*(x)) \forall x \in \Sigma_1^*$.

Proof. Let $x \in \Sigma_1^*$.

Now $L_1(x) = \vee\{i_1(p) \land \mu^*_1(p, x, q) \land f_1(q) \mid q \in Q_1\} \mid p \in Q_1\}$

Since Q_1 is finite, there exists $r, s \in Q_1$, such that

$L_1(x) = i_1(r) \land \mu^*_1(r, x, s) \land f_1(s)$

$\leq i_2(\alpha(r)) \land \mu^*_2(\alpha(r), \beta^*(x), \alpha(s)) \land f_2(\alpha(s))$

$\leq \vee\{i_2(r') \land \mu^*_2(r', \beta^*(x), s') \land f_2(s') \mid s' \in Q_2\} \mid r' \in Q_2\}$

$= L_2(\beta^*(x))$
4.3 Homomorphism

Thus \(L_1(x) \leq L_2(\beta^*(x)) \forall x \in \Sigma_1^* \).

Corollary 4.3.10.
If \(\beta \) is the identity map then \(L_1 \subseteq L_2 \).

Lemma 4.3.11.

Let \(M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1) \) and \(M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2) \) be ufsa's and
\((\alpha, \beta) : M_1 \to M_2 \) be a strong homomorphism. If \(\alpha \) is bijective then

(i) \(\mu_1^*(p, x, q) = \mu_2^*(\alpha(p), \beta^*(x), \alpha(q)) \forall p, q \in Q_1, x \in \Sigma_1^* \)

(ii) \(i_1(p) = i_2(\alpha(p)) \forall p \in Q_1 \)

(iii) \(f_1(p) = f_2(\alpha(p)) \forall p \in Q_1 \)

Proof. Suppose \(\alpha \) is one–one and onto.

(i) Let \(p, q \in Q_1, x \in \Sigma_1^* \).

We prove the result by induction on \(|x| = n \).

Let \(n = 0, x = \lambda, \beta^*(\lambda) = \lambda \).

If \(p = q \) then \(\alpha(p) = \alpha(q) \) and \(\mu_1(p, \lambda, q) = 1 = \mu_2(\alpha(p), \lambda, \alpha(q)) \).

If \(p \neq q \) then \(\alpha(p) \neq \alpha(q) \) and \(\mu_1(p, \lambda, q) = 0 = \mu_2(\alpha(p), \lambda, \alpha(q)) \).

Therefore the result is true for \(n = 0 \).

Suppose the result is true \(\forall x \in \Sigma_1^*, |x| \leq n - 1 \).

Let \(|x| = n, x = ya, y \in \Sigma_1^*, a \in \Sigma_1, |y| \approx n - 1 \).
4.3 Homomorphism

Then \(\mu_2^* (\alpha(p), \beta^*(x), \alpha(q)) \)

\[= \mu_2^* (\alpha(p), \beta^*(ya), \alpha(q)) \]
\[= \mu_2 (\alpha(p), \beta^*(ya)\beta(a), \alpha(q)) \]
\[= \bigvee \{ \mu_2^* (\alpha(p), \beta^*(ya), r') \land \mu_2 (r', \beta(a), \alpha(q)) \mid r' \in Q_2 \} \]

Since \(\alpha \) is onto, for \(r' \in Q_2 \), there exists an \(r \in Q_1 \) such that \(\alpha(r) = r' \).

Therefore \(\mu_2^* (\alpha(p), \beta^*(x), \alpha(q)) \)

\[= \bigvee \{ \mu_2^* (\alpha(p), \beta^*(y), \alpha(r)) \land \mu_2 (\alpha(r), \beta(a), \alpha(q)) \mid r \in Q_1 \} \]
\[= \bigvee \{ \mu_2^* (p, y, r) \land \mu_1 (r, a, q) \mid r \in Q_1 \} \quad \text{[by induction]} \]
\[= \mu_1^* (p, ya, q) \]
\[= \mu_1^* (p, x, q) \]

Thus the result is true for \(|x| = n \). Hence the result.

(ii) Let \(p \in Q_1 \),

\[i_2(\alpha(p)) = \bigvee \{ i_1(r) \mid r \in Q_1, \alpha(r) = \alpha(p) \} . \]

Since \(\alpha \) is one–one, \(i_2(\alpha(p)) = i_1(p) \).

(iii) Let \(p \in Q_1 \),

\[f_2(\alpha(p)) = \bigvee \{ f_1(r) \mid r \in Q_1, \alpha(r) = \alpha(p) \} . \]

Since \(\alpha \) is one–one, \(f_2(\alpha(p)) = f_1(p) \).

Theorem 4.3.12.

Let \(M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1) \) and \(M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2) \) be uffsa’s such that \(L_1 \) and \(L_2 \) are the fuzzy regular languages accepted by \(M_1 \) and \(M_2 \) respectively. Let \((\alpha, \beta) : M_1 \to M_2 \) be a strong homomorphism and if \(\alpha \) is bijective then \(L_1(x) = L_2(\beta^*(x)) \forall x \in \Sigma_1^* \).
4.3 Homomorphism

Proof. By theorem 4.3.9,

\[L_1(x) \leq L_2(\beta^*(x)) \forall x \in \Sigma_1^* \]

(4.1)

Let \(x \in \Sigma_1^* \),

\[L_2(\beta^*(x)) = \bigvee \left\{ i_2(p') \land \mu_2^*(p', \beta^*(x), q') \land f_2(q') \mid q' \in Q_2 \right\} \]

Since \(Q_2 \) is finite, there exists \(r', s' \in Q_2 \) such that \(L_2(\beta^*(x)) = i_2(r') \land \mu_2^*(r', \beta^*(x), s') \land f_2(s') \)

Since \(\alpha \) is onto, there exists \(r, s \in Q_1 \) such that \(\alpha(r) = r' \) and \(\alpha(s) = s' \).

Therefore, \(L_2(\beta^*(x)) = i_2(\alpha(r)) \land \mu_2^*(\alpha(r), \beta^*(x), \alpha(s)) \land f_2(\alpha(s)) \)

By Lemma 4.3.11,

\[L_2(\beta^*(x)) = i_1(r) \land \mu_1^*(r, x, s) \land f_1(s) \]

\[\leq \bigvee \left\{ i_1(p) \land \mu_1^*(p, x, q) \land f_1(q) \mid q \in Q_1 \right\} \]

\[= L_1(x) \]

Thus \(L_2(\beta^*(x)) \leq L_1(x) \forall x \in \Sigma_1^* \)

(4.2)

From (4.1) and (4.2), \(L_1(x) = L_2(\beta^*(x)) \). Hence the theorem. \(\blacksquare \)

Corollary 4.3.13.

If \(\beta \) is the identity map then \(L_1(x) = L_2(x) \forall x \in \Sigma_1^* \). i.e., \(L_1 = L_2 \).

Theorem 4.3.14.

If \(M_1 \) and \(M_2 \) are strong isomorphic as uffsa's, then \(F(M_1) \) and \(F(M_2) \) are isomorphic as monoids.

Proof. Let \(M_1 = (Q_1, \Sigma_1, \mu_1, i_1, f_1) \) and \(M_2 = (Q_2, \Sigma_2, \mu_2, i_2, f_2) \) be uffsa’s.

Let \((\alpha, \beta) : M_1 \rightarrow M_2\) be a strong isomorphism.
4.3 Homomorphism

\[F(M_1) = \{ f_x | x \in \Sigma_1^* \}, \quad F(M_2) = \{ g_x | x \in \Sigma_2^* \} \]

Define \(\phi : F(M_1) \rightarrow F(M_2) \) by \(\phi(f_x) = g_{\beta^*(x)} \forall f_x \in F(M_1) \)

Claim: \(\phi \) is well defined.

Let \(f_x, f_y \in F(M_1) \) and \(f_x = f_y \).

This implies that \(f_x(p) = f_y(p) \ \forall p \in Q_1 \), therefore

\[\alpha(f_x(p)) = \alpha(f_y(p)) \tag{4.3} \]

To prove, \(\alpha(f_x(p)) = g_{\beta^*(x)}(\alpha(p)) \ \forall x \in \Sigma_1^*, \ p \in Q_1 \).

We prove this result by induction on \(|x| = n \).

Let \(n = 0, \ x = \lambda, \ p \in Q_1 \)

Now \(\alpha(f_x(p)) = \alpha(f_\lambda(p)) = \alpha(p) \)

\(g_{\beta^*(x)}(\alpha(p)) = g_{\beta^*(\lambda)}(\alpha(p)) = g_\lambda(\alpha(p)) = \alpha(p) \)

Therefore \(\alpha(f_x(p)) = g_{\beta^*(x)}(\alpha(p)) \)

Thus the result is true for \(n = 0 \).

Suppose the result is true for all \(x \in \Sigma_1^*, \ |x| < n \).

Let \(|x| = n, \ x = ya, \ y \in \Sigma_1^*, \ a \in \Sigma_1, \ |y| = n - 1 \).

Now \(\alpha(f_x(p)) = \alpha(f_ya(p)) \)

\[= \alpha(f_a \circ f_y(p)) = \alpha(f_a(f_y(p))) \]

\[= \alpha(f_a(q)), \text{ where } q \text{ is such that } f_y(p) = q \in Q_1 \]

\[= \alpha(q'), \text{ where } q' \text{ is such that } f_a(q) = q' \in Q_1 \tag{4.4} \]

\(g_{\beta^*(x)}(\alpha(p)) = g_{\beta^*(ya)}(\alpha(p)) \)

\[= g_{\beta^*(y)a}(\alpha(p)) = g_{\beta^*(y)b(a)}(\alpha(p)) = (g_{\beta^*(y)} \circ g_{\beta^*(y)})(\alpha(p)) \]

91
4.3 Homomorphism

\[g_{\beta(y)}(\alpha(p)) = g_{\beta(y)}(\alpha(p)) \]

(4.5)

By induction, \(g_{\beta(y)}(\alpha(p)) = \alpha(f_y(p)) \)

Therefore,

\[g_{\beta(a)}(\alpha(q)) = g_{\beta(a)}(\alpha(q)) \]

= \(s \),

(4.6)

where \(s \) is such that \(\mu_2(\alpha(q), \beta(a), s) = \vee\{\mu_2(\alpha(q), \beta(a), \tau) \mid \tau \in Q_2\} \).

But \(f_a(q) = q' \), therefore \(\mu_1(q, a, q') = \vee\{\mu_1(q, a, \tau') \mid \tau' \in Q_1\} \).

Since \(\alpha \) and \(\beta \) are bijective,

\[\mu_1(q, a, q') = \mu_2(\alpha(q), \beta(a), \alpha(q')) \]

= \(\vee\{\mu_2(\alpha(q), \beta(a), \tau) \mid \tau \in Q_2\} \);

otherwise \(\mu_1(q, a, q') \) will not be maximum.

= \(\mu_2(\alpha(q), \beta(a), s) \)

We have \(\mu_2(\alpha(q), \beta(a), \alpha(q')) = \mu_2(\alpha(q), \beta(a), s) \).

Since \(M_2 \) is an uffsa, \(\alpha(q') = s \).

From (4.5) and (4.6), \(\alpha(f_a(p)) = g_{\beta(a)}(\alpha(p)) \)

Thus the result is true for \(|x| = n \).

Hence the result is true for any \(x \in \Sigma_1 \).

Applying this result to (4.4), we get

\[g_{\beta(y)}(\alpha(p)) = g_{\beta(y)}(\alpha(p)) \forall p \in Q_1 \]

Since \(\alpha \) is onto, \(\forall q \in Q_2, g_{\beta(a)}(q) = g_{\beta(y)}(q) \)

Therefore \(g_{\beta(y)} = g_{\beta(y)} \) and hence \(\phi(f_x) = \phi(f_y) \)
4.3 Homomorphism

Therefore ϕ is well defined.

Claim: ϕ is a homomorphism.

Let $f_x, f_y \in F(M_1)$.

Now $\phi(f_x \circ f_y) = \phi(f_{yx})$

$$= g_{\beta^*(yx)} = g_{\beta^*(y)\beta^*(x)} = g_{\beta^*(x)} \circ g_{\beta^*(y)} = \phi(f_x) \circ \phi(f_y)$$

Also $\phi(f_\lambda) = g_{\beta^*(\lambda)} = g_\lambda$. Therefore ϕ is a homomorphism.

Claim: ϕ is one–one.

Let $f_x, f_y \in F(M_1)$ and $\phi(f_x) = \phi(f_y)$, implies that $g_{\beta^*(x)} = g_{\beta^*(y)}$ and so $g_{\beta^*(x)}(q) = g_{\beta^*(y)}(q) \forall q \in Q_2$.

Therefore $g_{\beta^*(x)}(\alpha(p)) = g_{\beta^*(y)}(\alpha(p)) \forall p \in Q_1$, that is $\alpha(f_x(p)) = \alpha(f_y(p))$.

We have α is one–one. Therefore $f_x(p) = f_y(p) \forall p \in Q_1$.

That is $f_x = f_y$. Therefore ϕ is one–one.

To prove, ϕ is onto, first we prove $\beta^*: \Sigma_1^* \rightarrow \Sigma_2^*$ is onto.

Let $y = b_1b_2 \cdots b_n \in \Sigma_2^*$, $b_i \in \Sigma_2$, $i = 1, 2, \ldots, n$.

β is onto, therefore there exists $a_i \in \Sigma_1$ such that $\beta(a_i) = b_i$, $i = 1, 2, \ldots, n$.

Therefore $y = \beta(a_1)\beta(a_2) \cdots \beta(a_n)$

$$= \beta^*(a_1a_2 \cdots a_n)$$

$$= \beta^*(x), x = a_1a_2 \cdots a_n \in \Sigma_1^*$$

Hence β^* is onto.

Let $z \in F(M_2)$. Then $z = g_y$, for some $y \in \Sigma_2^*$.

Since β^* is onto, there exists an $x \in \Sigma_1^*$ such that $\beta^*(x) = y$. Therefore $g_y = g_{\beta^*(x)}$, $x \in \Sigma_1^*$. Hence $f_x \in F(M_1)$ and we have $\phi(f_x) = g_{\beta^*(x)} = g_y = z$.

Hence ϕ is onto. Therefore ϕ is an isomorphism of monoids.

\[93\]
4.4 Admissible Relation

In this section, we define admissible relation in uffsa and prove some results.

For the basic concepts in admissible relation, we refer to [38].

Definition 4.4.1.

Let $M = (Q, \Sigma, \mu, i, f)$ be an uffsa and let \sim be an equivalence relation on Q. Then \sim is called an admissible relation if and only if for all $p, q, r \in Q, \forall a \in \Sigma$, if $p \sim q$ and $\mu(p, a, r) > 0$, then there exists a $t \in Q$ such that $\mu(p, a, r) = \mu(q, a, t)$ and $t \sim r$.

Theorem 4.4.2.

Let $M = (Q, \Sigma, \mu, i, f)$ be an uffsa and let \sim be an equivalence relation on Q. Then \sim is an admissible relation if and only if for all $p, q, r \in Q, \forall x \in \Sigma^*$, if $p \sim q$ and $\mu^*(p, x, r) > 0$ then there exists a $t \in Q$ such that $\mu^*(p, x, r) = \mu^*(q, x, t)$ and $t \sim r$.

Proof. Suppose \sim is an admissible relation on Q.

Let $p, q \in Q$ be such that $p \sim q$.

Let $x \in \Sigma^*, r \in Q$ be such that $\mu^*(p, x, r) > 0$.

We prove the result by induction on $|x| = n$.

Let $n = 0$, $x = \lambda$, $p \sim q$ and

$\mu^*(p, x, r) > 0$, implies that $p = r$ and $\mu^*(p, x, p) = 1$.

Now $\mu^*(q, x, q) = 1$ and $q \sim p$.

Thus the result is true for $n = 0$.

Suppose the result is true $\forall x \in \Sigma^*, |x| < n$.

94
4.4 Admissible Relation

Let $|x| = n$, $x = ya$, where $y \in \Sigma^*$, $a \in \Sigma$, $|y| = n - 1$.

Let $p, q \in Q$, $p \sim q$ and $\mu^* (p, x, r) > 0$

Therefore $\mu^* (p, ya, r) = \forall \{\mu^* (p, y, q_1) \land \mu (q_1, a, r) \mid q_1 \in Q\} > 0$

Since Q is finite, there exists an $s \in Q$ such that

$\mu^* (p, ya, r) = \mu^* (p, y, s) \land \mu (s, a, r) > 0$

Therefore $\mu^* (p, y, s) > 0$ and $\mu (s, a, r) > 0$

By induction, there exists $t_s \in Q$ such that

$\mu^* (p, y, s) = \mu^* (q, y, t_s)$ and $t_s \sim s$.

Now $\mu (s, a, r) > 0$ and $s \sim t_s$ then there exists $t \in Q$

such that $\mu (s, a, r) = \mu (t_s, a, t), r \sim t$

Therefore $\mu^* (p, ya, r) = \mu^* (q, y, t_s) \land \mu (t_s, a, t)$

Since M is an uffa, the maximum will be arrived for any r' such that $r' \sim t_s$ only.

Therefore, $\mu^* (p, ya, r) = \forall \{\mu^* (q, y, r') \land \mu^* (r', a, t) \mid r' \in Q\}$

$= \mu^* (q, ya, t), r \sim t$

i.e., $\mu^* (p, x, r) = \mu^* (q, x, t), r \sim t$

Thus the result is true for $|x| = n$. Hence the result. □

Lemma 4.4.3.

Let $M = (Q, \Sigma, \mu, i, f)$ be an uffa and let \sim be an admissible relation on Q.

Then there exists a fuzzy subset $\mu_1 : Q_1 \times \Sigma \times Q_1 \rightarrow [0, 1]$, where $Q_1 = Q/ \sim$.

Moreover, μ_1 is a fuzzy function of $Q_1 \times \Sigma \times [0, 1]$ into Q_1.

Proof. Let $q \in Q$ and $[q]$ be the equivalence class of q.

i.e., $[q] = \{p \in Q \mid q \sim p\}$. Let $Q_1 = Q/ \sim = \{[q] \mid q \in Q\}$. 95
4.4 Admissible Relation

Define $\mu_1 : Q_1 \times \Sigma \times Q_1 \to [0, 1]$ by

$$\mu_1 ([p], a, [q]) = \mu (p, a, r), \quad r \in [q] \quad \forall p \in Q, \quad a \in \Sigma$$

(4.7)

Suppose $([p], a, [q]) = ([p'], b, [q'])$

Therefore $[p] = [p'], \quad a = b, \quad [q] = [q']$

Implies that $p \sim p'$ and $q \sim q'$

Let $\mu (p, a, r) > 0, \quad r \in [q]$ and $p \sim p'$, since \sim an admissible relation on Q, there exists $t \in Q$ such that

$$\mu (p, a, r) = \mu (p', a, t) \quad \text{and} \quad t \sim r$$

(4.8)

$r \in [q]$, implies that $r \in [q']$ and so $t \in [q']$.

By the definition of μ_1,

$$\mu (p', a, t) = \mu_1 ([p'], a, [q'])$$

(4.9)

From (4.7), (4.8) and (4.9), $\mu_1 ([p], a, [q]) = \mu_1 ([p'], b, [q'])$

Therefore μ_1 is well defined.

We shall prove μ_1 is a fuzzy function.

Let $\mu_1 ([p], a, [q]) = \mu_1 ([p], a, [q']) > 0$

Therefore there exists $r, r' \in Q$ such that

$$\mu_1 ([p], a, [q]) = \mu (p, a, r) \quad \text{and} \quad r \sim q$$

$$\mu_1 ([p], a, [q']) = \mu (p, a, r') \quad \text{and} \quad r' \sim q'$$

Therefore $\mu (p, a, r) = \mu (p, a, r')$

Since M is an ufsa, $r = r'$, therefore $r \sim q$ and $r \sim q'$.

Hence $q \sim q'$ and so, $[q] = [q']$

Therefore μ_1 is a fuzzy function from $Q_1 \times \Sigma \times [0, 1]$ into Q_1.
4.4 Admissible Relation

Definition 4.4.4.
Let \(M = (Q, \Sigma, \mu, i, f) \) be an uffsa and \(\sim \) be an admissible relation on \(Q \). Let \(Q_1 = Q/\sim \). Define the uffsa \(M_1 = (Q_1, \Sigma, \mu_1, i_1, f_1) \), where \(\mu_1 \) is the fuzzy subset \(\mu_1 : Q_1 \times \Sigma \times Q_1 \rightarrow [0, 1] \) such that \(\forall [p], [q] \in Q_1 \)
\[
\mu_1([p], a, [q]) = \mu(p, a, r), \quad r \in [q]
\]
\(i_1 : Q_1 \rightarrow [0, 1] \) such that \(i_1([p]) = \vee\{i(q) \mid q \in [p]\} \)
\(f_1 : Q_1 \rightarrow [0, 1] \) such that \(f_1([p]) = \vee\{f(q) \mid q \in [p]\} \)

Theorem 4.4.5.
Let the uffsa \(M = (Q, \Sigma, \mu, i, f) \) and the uffsa \(M_1 \) be as in Definition 4.4.4.
Then there exists a strong homomorphism from \(M \) onto \(M_1 \).

Proof. Let \((\alpha, \beta) : M \rightarrow M_1 \) be a mapping, where \(\alpha : Q \rightarrow Q_1 \) such that \(\alpha(q) = [q] \) \(\forall q \in Q \), \(\beta : \Sigma \rightarrow \Sigma \), the identity map.
Let \(p, q \in Q_1 \).

(i) \[
\mu_1(\alpha(p), \beta(a), \alpha(q)) = \mu_1(\alpha(p), a, \alpha(q))
= \mu_1([p], a, [q])
= \mu(p, a, r), r \in [q]
= \mu(p, a, r), [r] = [q]
= \mu(p, a, r), \alpha(r) = \alpha(q)
= \vee\{\mu(p, a, r) \mid \alpha(r) = \alpha(q)\}
\]

(ii) \[
i_1(\alpha(p)) = i_1([p])
= \vee\{i(q) \mid q \in [p]\}
= \vee\{i(q) \mid \alpha(q) = \alpha(p)\}
\]

97
4.4 Admissible Relation

\[(iii) \quad f_1(\alpha(p)) = f_1([p])
\]

\[= \vee \{ f(q) \mid q \in [p] \}\]

\[= \vee \{ f(q) \mid \alpha(q) = \alpha(p) \}\]

Thus \((\alpha, \beta)\) is a strong homomorphism.

Clearly \(\alpha\) is onto, which completes the theorem.