I Introduction to FT-IR, FT-Raman Spectroscopy and theoretical models

1.1 Introduction to spectroscopy
1.2 Instrumentation for infrared spectroscopy
 1.2.1 Source
 1.2.2 Optical path and monochromator
 1.2.3 Thermal detectors
 1.2.4 Amplifier and recorders
 1.2.5 Sample
 1.2.6 Sample handling techniques
1.3 Applications of infrared spectroscopy
 1.3.1 Calculation of force Constants
 1.3.2 Deduction of the Shape or Symmetry of a molecule
 1.3.3 Calculation of bond distances, force constants etc.,
 1.3.4 Identification of the compound or groups
 1.3.5 Aromatic rings and substitution effects of IR spectra
 1.3.5.1 C-H bending vibrations
 1.3.5.2 Monosubstituted rings
 1.3.5.3 Ortho-disubstituted rings
 1.3.5.4 Meta-disubstituted rings
 1.3.5.5 Para-disubstituted rings
 1.3.6 Combination and overtone bands
 1.3.7 Impurity detection and quantitative analysis
 1.3.8 Study of polymer
 1.3.9 Study of chemical reactions
1.4 Fourier Transform Spectroscopy
 1.4.1 The multiplex (or Fellgett) advantage
 1.4.2 Resolving Power
 1.4.3 Throughput advantage
 1.4.4 FT-IR microspectroscopy
1.5 Raman Spectroscopy
 1.5.1 Theory of Raman Spectroscopy
 1.5.2 Instrumentation of Raman Spectroscopy
 1.5.2.1 Sources
 1.5.2.2 Monochromators
 1.5.2.3 Detectors
 1.5.2.4 Samples and sample cells
 1.5.3 FT-Raman spectroscopy
1.5.4 Sample handling techniques in Raman spectroscopy
1.5.5 Raman microspectroscopy
1.5.6 Applications of Raman spectroscopy
1.5.7 Advantages and limitations of spectroscopy

1.6 Vibrational frequencies and thermodynamic properties
1.6.1 Frequencies
 1.6.1.1 Frequencies – ab initio calculations
 1.6.1.2 Frequencies – DFT calculations
1.6.2 Calculation of harmonic vibrational frequencies
1.6.3 Source of error in the comparison of theoretical and experimental vibrational frequencies
1.6.4 Isolated C-H stretching frequencies

1.7 Computational chemistry and theoretical models
1.7.1 An Overview
 1.7.1.1 Molecular mechanics
 1.7.1.2 Electronic Structure Methods
1.7.2 Hartree-Fock Method
1.7.3 Density Functional Theory Methods
 1.7.3.1 Derivation and formalism
1.7.4 Basis sets
1.7.5 Prediction of Raman intensities
1.7.6 Calculation of thermodynamic properties
 1.7.6.1 Zero Point Energy
 1.7.6.2 Entropies
 1.7.6.3 Dipole Moment

1.8 Scope of the present investigation

References

II Harmonic analysis of vibrations of morpholine-4-ylmethylthiourea: A DFT, Midinfrared and Raman Spectral Study

Abstract

2.1 Introduction

2.2 Experimental Details

2.3 Computational Details

2.4 Results and Discussion
 2.4.1 Molecular Geometry
 2.4.2 Vibrational Assignments
 2.4.3 C-NH₂ group vibrations
 2.4.4 NH₂ group vibrations
 2.4.5 Methylene group vibration
 2.4.6 C-O-C stretching vibrations
 2.4.7 C=S vibration
 2.4.8 Other molecular properties

2.5 Conclusions

References
III Experimental (FT-IR and FT-Raman), \textit{ab initio} and DFT Study of Vibrational Frequencies of 5-amino-2-nitrobenzoic acid

Abstract

3.1 Introduction
3.2 Experimental Details
3.3 Computational Details
3.4 Results and Discussion
3.4.1 Geometric Structure
3.4.2 Hydrogen Bonding
3.4.3 Vibrational Assignments
3.4.4 Aromatic C-H stretching/bending
3.4.5 Phenyl ring vibrations
3.4.6 C – NH$_2$ Vibrations
3.4.7 COOH Vibrations
3.4.8 NO$_2$ Vibrations
3.5 Conclusions

References

IV Molecular Structure and Vibrational Spectra of 3-amino-5-hydroxypyrazole by Density Functional Method

Abstract

4.1 Introduction
4.2 Experimental Details
4.3 Computational Details
4.4 Results and discussion
4.4.1 Molecular Geometry
4.4.2 Vibrational assignments
4.4.3 N-H vibrations
4.4.4 Phenyl ring vibrations
4.4.5 C-H vibrations
4.4.6 NH$_2$ vibrations
4.4.7 O-H vibrations
4.4.8 Other molecular properties
4.5 Conclusions

References

V Vibrational Spectroscopic studies and DFT calculations of 4-aminoantipyrine

Abstract

5.1 Introduction
5.2 Experimental Details
5.3 Computational Details
5.3.1 Prediction of Raman Intensities
5.4 Results and Discussion

5.4.1 Molecular Geometry
5.4.2 Vibrational assignments
5.4.3 C-H vibrations
5.4.4 Methyl group vibrations
5.4.5 NH₂ vibrations
5.4.6 Ring vibration
5.4.7 C=O vibrations
5.4.8 C-N Vibrations

5.5 Conclusions

References

VI FT-IR, FT-Raman, *ab initio* and DFT structural and vibrational frequency analysis of 6-aminopenicillanic acid

Abstract

6.1 Introduction
6.2 Experimental Details
6.3 Computational Details
6.3.1 Prediction of Raman Intensities
6.4 Results and Discussion
6.4.1 Geometric Structure
6.4.2 Vibrational Spectral Analysis
6.4.3 COOH vibrations
6.4.4 C-H vibrations
6.4.5 Methyl group vibrations
6.4.6 C-CH₃ vibrations
6.4.7 NH₂ vibrations
6.4.8 Ring vibrations
6.4.9 C-S Vibrations
6.4.10 Other molecular properties
6.5 Conclusions

References

VII FT-IR and FT-Raman vibrational assignment of 2-bromobenzoic acid with the help of *ab initio* and DFT calculations

Abstract

7.1 Introduction
7.2 Experimental Details
7.3 Computational Details
7.3.1 Prediction of Raman Intensities
7.4 Results and Discussion
7.4.1 Molecular Geometry
7.4.2 Vibrational Analysis
7.4.3 C-H Vibrations
7.4.4 C-C Vibrations
7.4.5 C-Br Vibrations
7.4.6 COOH Vibrations
7.4.7 C-COOH Vibrations
7.4.8 Overtones and Combinational Bands
7.4.9 Other Molecular Properties

7.5 Conclusions 190

References 191

Summary 193

List of publications