| CONTENTS |
|---------------------|---------------------|
| CHAPTER-1 INTRODUCTION | 1-9 |
| CHAPTER-2 REVIEW OF LITERATURE | 10-45 |
| 2.1 Various methods for determination of triglycerides | 11 |
| 2.1.1 Chemical measures | 11 |
| 2.1.1.1 Titrimetric method | 12 |
| 2.1.1.2 Micro methods | 12 |
| 2.1.1.3 Autoanalyser method | 12 |
| 2.1.2 Chromatographic method | 13 |
| 2.1.2.1 Thin layer chromatographic method | 13 |
| 2.1.2.2 HPLC method | 14 |
| 2.1.2.3 Capillary on - column gas chromatography method | 15 |
| 2.1.3 Other methods | 15 |
| 2.2 Properties of free and immobilized enzymes employed for triglycerides determination | 16 |
| 2.2.1 Lipase | 16 |
| 2.2.1.1 Physiochemical properties of lipase | 16 |
| 2.2.1.1.1 Molecular weight | 16 |
| 2.2.1.1.2 Optimum pH | 16 |
| 2.2.1.1.3 Effect of substrate concentration or substrate specificity | 17 |
| 2.2.1.1.4 Kinetics / $K_m$ and $V_{max}$ | 17 |
| 2.2.2 Glycerol kinase | 18 |
| 2.2.2.1 Physiochemical properties of glycerol kinase | 18 |
| 2.2.2.1.1 Molecular weight | 18 |
| 2.2.2.1.2 Optimum pH | 19 |
| 2.2.2.1.3 Kinetics / $K_m$ and $V_{max}$ | 19 |
| 2.2.3 Glycerol -3-phosphate oxidase | 19 |
| 2.2.3.1 Physiochemical properties of glycerol-3-phosphate oxidase | 19 |
| 2.2.3.1.1 Molecular weight | 19 |
| 2.2.3.1.2 Kinetics / $K_m$ and $V_{max}$ | 20 |
| 2.2.4 Immobilization of lipase | 20-22 |
| 2.2.4.1 Kinetic properties of immobilized lipase | 22 |
| 2.2.4.1.1 Optimum pH | 22 |
| 2.2.4.1.2 Optimum temperature | 22 |
| 2.2.4.1.3 Kinetics / $K_m$ and $V_{max}$ | 23 |
2.2.3.1.4 Storage and stability 23

2.2.5 Immobilization of glycerol kinase 24
2.2.5.1 Kinetic properties of immobilized glycerol kinase
2.2.5.1.1 Optimum pH 25
2.2.5.1.2 Optimum temperature 25
2.2.5.1.3 Kinetics / $K_m$ and $V_{max}$ 25
2.2.5.1.4 Storage and stability 25

2.2.6 Immobilization of glycerol-3-phosphate oxidase 26
2.2.6.1 Kinetic properties of immobilized glycerol-3-phosphate oxidase
2.2.6.1.1 Optimum pH 26
2.2.6.1.2 Optimum temperature 26
2.2.6.1.3 Kinetics / $K_m$ and $V_{max}$ 27
2.2.6.1.4 Storage and stability 27

2.2.7 Immobilization of peroxidase 27-28
2.2.7.1 Kinetic properties of immobilized peroxidase
2.2.7.1.1 Optimum pH 29
2.2.7.1.2 Optimum temperature 29
2.2.7.1.3 Kinetics / $K_m$ and $V_{max}$ 29
2.2.7.1.4 Storage and stability 29

2.3 Methods using free enzymes 30
2.3.1 Enzymatic colorimetric and UV assay 30-34
2.3.2 Bioluminescent assay 34
2.3.3 Enzymic fluorimetric assay 35-36

2.4 Methods using immobilized enzymes 36-38
2.4.1 Based on UV enzymic method 38
2.4.2 Based on semienzymic method 39
2.4.3 Based on enzyme colourimetric method 39

2.5 Biosensor 40-42
2.5.1 Triglyceride biosensor 42-45

CHAPTER-3 MATERIAL AND METHODS 46-65
3.1 Sources of chemicals and biochemicals 46
3.2 Instrumentation and equipment used 46
3.3 Dissolution of lipase, glycerol kinase, glycerol-3-phosphate-oxidase and peroxidase 47
3.4 Preparation of triolein solution 47
3.5 Assay of mixture of free lipase, glycerol kinase, glycerol-3-phosphate-oxidase and peroxidase 47
3.5.1 Principle 47
3.5.2 Preparation of colour reagent 48
3.5.3 Preparation of standard curve of H₂O₂ 48
3.5.4 Unit of enzyme 49

3.6 Determination of protein 49
3.6.1 Principle 49-50
3.6.2 Procedure 50

3.7 Preparation of amperometric enzyme electrode 51
3.7.1 Preparation of cellulose acetate (CA) membrane 51
3.7.2 Activation of CA membrane 51
3.7.3 Co-immobilization of enzymes on activate CA membrane 51
3.7.4 Preparation of enzyme electrode 52
3.7.5 Response measurement by electrode 52

3.8 Preparation of reusable enzyme strip/biostrip 53
3.8.1 Cutting of plastic strip 53
3.8.2 Affixation of alkylamine and arylamine glass beads on plastic strip to prepare alkylamine and arylamine biostrips 53
3.8.3 Activation of affixed glass beads 53-54
3.8.4 Co-immobilization of enzymes on activated glass beads 54
3.8.5 Testing of activity of enzyme strip / biostrip 55

3.9 Kinase properties of co-immobilized enzymes lipase, glycerol kinase, glycerol-3-phosphate-oxidase and peroxidase 55
3.9.1 Effect of pH 56
3.9.2 Effect of temperature 56-57
3.9.3 Effect of time of incubation 57
3.9.4 Effect of substrate concentration 57
3.9.5 Determination of Kₘ and Vₘₘₙₐₓ 58

3.10 Development of new methods for determination of serum triglycerides 58
3.10.1 By amperometric enzyme electrode/ biosensor 58
3.10.2 By alkylamine and arylamine biostrips 59

3.11 Determination of triglycerides in serum 59
3.11.1 Collection of blood sample 59
3.11.2 Preparation of serum sample 59-60
3.11.3 Preparation of standard curve for triglycerides with biosensor 60
3.11.4 Preparation of standard curve for triglyceride with alkylamine and arylamine biostrips

3.11.5 Determination of serum triglyceride with biosensor and biostrip based on co-immobilized lipase, glycerol kinase, glycerol-3-phosphate-oxidase and peroxidase

3.12 Reuse and storage of biosensor and biostrip

3.13 Criteria for evaluation of new methods for determination of triglycerides

3.13.1 Detection limit

3.13.2 Percent recovery

3.13.3 Precision

3.13.4 Accuracy

3.13.5 Determination of serum triglycerides by Bayer's enzo-kit method

3.13.5.1 Principle

3.13.5.2 Preparation of working solution

3.13.5.3 Assay of serum triglycerides

3.13.6 Effect of interfering substances

3.14 Statistical methods used

CHAPTER-4 RESULTS

4.1 Co-immobilization of lipase, glycerol kinase, glycerol-3-phosphate-oxidase and peroxidase

4.1.1 On cellulose acetate (CA) membrane

4.1.2 Affixed alkylamine and arylamine glass beads

4.2 Kinetic properties of co-immobilized lipase, glycerol kinase, glycerol-3-phosphate-oxidase and peroxidase

4.2.1 Kinetic properties of CA membrane bound lipase, glycerol kinase and glycerol-3-phosphate-oxidase

4.2.1.1 Effect of pH

4.2.1.2 Effect of incubation temperature

4.2.1.3 Effect of time of incubation

4.2.1.4 Effect of substrate concentration

4.2.1.5 $K_m$ and $V_{max}$

4.2.1.6 Effect of metal ions and metal salts

4.2.1.7 Effect of serum metabolites

4.2.1.8 Storage stability and reusability

4.2.2 Kinetic properties of strip bound enzymes

4.2.2.1 Effect of pH

4.2.2.2 Effect of incubation temperature, thermal stability and energy of activation

4.2.2.3 Effect of time of incubation
4.2.2.4 Effect of substrate concentration 72
4.2.2.5 $K_m$ and $V_{max}$ 73
4.2.2.6 Effect of metal ions and metal salts 73
4.2.2.7 Effect of serum metabolites 73
4.2.2.8 Storage stability and reusability 74

4.3 Determination of serum triglyceride by biosensor and reusable biostrips 74

4.3.1 Linearity 75
4.3.2 Minimum detection limit 75
4.3.3 Analytical recovery 75
4.3.4 Precision data 75-76
4.3.5 Accuracy 76

4.4 Determination of serum triglyceride in healthy and diseased persons 76

4.4.1 Serum triglyceride value by biosensor in healthy persons 76-77
4.4.2 Serum triglyceride value by biosensor in diseased persons 77
4.4.3 Serum triglyceride values by alkylamine biostrip in healthy persons 77-78
4.4.4 Serum triglyceride values by alkylamine biostrip in diseased persons 78
4.4.5 Serum triglyceride values by arylamine biostrip in healthy persons 78
4.4.6 Serum triglyceride values by arylamine biostrip in diseased persons 78-79

CHAPTER-5 DISCUSSION 80-95
CHAPTER-6 SUMMARY 96-100
BIBLIOGRAPHY 101-121