CONTENTS

CHAPTER 1 INTRODUCTION 1-36

1.1 Essential oils
 1.1.1 World scenario of essential oils
 1.1.2 Historical survey
 1.1.3 Uses of essential oils

1.2 Corn mint oil
 1.2.1 History of mint oil
 1.2.2 Types of crops producing mint oil
 1.2.3 Chemical composition of corn mint oil
 1.2.4 Processing technology
 1.2.5 Manufacture of natural 1-menthol
 1.2.6 Utilization of By-product
 1.2.6.a By-product-1- spent hay
 1.2.6.b By-product-2- menthol isomers
 1.2.6.c By-product-3- menthone oil
 1.2.7 Dementholized mint oil
 1.2.8 Mint oil & its derivatives
 1.2.9 Uses of mint

1.3 Cymbopogon oil (palmarosa oil)
 1.3.1 History
 1.3.2 Various species of Cymbopogon
 1.3.3 Physico-chemical properties of palmarosa oil
 1.3.4 Palmarosa oil processing
 1.3.5 Derivatives of palmarosa oil
 1.3.6 Uses of palmarosa oil

CHAPTER 2 CULTIVATION 37-60

2.1 Cultivation of Mentha arvensis
 2.1.1 Introduction
 2.1.2 Material and method
 2.1.2.a Soil conditioning
 2.1.2.b Biomass decomposing
 2.1.2.c Treatments of microbes
 2.1.2.d Sucker sowing
 2.1.2.e Irrigation
 2.1.2.f Weed control and application of biofunicide and bioinsecticide
 2.1.3 Result and discussion

2.2 Cultivation of Cymbopogon species
 2.2.1 Introduction
 2.2.2 Material and methods
 2.2.3 Result and discussion

CHAPTER 3 STEAM DISTILLATION OF MINT OIL 61-84

3.1 Introduction

3.2 Designing of steam distillery
 3.2.1 Site choice
 3.2.2 Distillation charge
 3.2.3 Still
 3.2.4 Boiler
 3.2.5 Condenser
 3.2.6 Oil separator
 3.2.7 Storage
 3.2.8 Quality control

3.3 Pilot scale still

3.4 Material and methods

3.5 Result and discussion
CHAPTER 4 FRACTIONAL DISTILLATION & RECTIFICATION

4.1 Introduction

4.2 Methods of distillation
 4.2.1 Differential distillation
 4.2.2 Flash or equilibrium distillation
 4.2.3 Rectification

4.3 Fractionating column
 4.3.1 Equilibrium curve or relative volatility
 4.3.2 Number of plates required in a distillation column
 4.3.3 Heat balance over a plate
 4.3.4 Methods for calculating the number of plates
 4.3.4.a Lewis and Sorel method for calculating number of plates
 4.3.4.b McCabe and Thiele Method
 4.3.4.c Effect of reflux ratio on the number of plate required
 4.3.4.d Calculation of minimum reflux ratio \(R_m \)
 4.3.4.e Underwood and Fenske equations
 4.3.4.f In multi-component system
 4.3.4.g Gilliland method

4.4 Batch distillation

4.5 Packed column

4.6 Column packing

4.7 Materials and methods
 4.7.1 Materials
 4.7.1.a Crude mint oil
 4.7.1.b Batch fractionating column
 4.7.1.c Gas liquid chromatography
 4.7.1.d Vapour pressure data
 4.7.2 Methods
 4.7.2.a Minimum plates- Fenske method
 4.7.2.b Minimum reflux- Underwood equation
 4.7.2.c \(R, R_m, N, N_m \) - Gilliland method
 4.7.2.d Component distribution- Geddes method
 4.7.2.e To use these equation- following correlation was to be calculated
 4.7.2.f Distribution of non-key components

4.8 Design of pilot scale plant
 4.8.1 Relative volatility (\(\alpha \))
 4.8.2 HETP- To calculate HETP
 4.8.3 Experimental problem
 4.8.3.a Case- I
 4.8.3.b Case- II
 4.8.3.c Case- III
 4.8.3.d Case- IV
 4.8.4 Reloading of first cut of case- IV
 4.8.5 Reloading of first cut of case- III
 4.8.6 Reloading of first cut of case- II
 4.8.7 Theoretical results
 4.8.8 Practical result from column
 4.8.8.a First operation
 4.8.8.b Second operation

4.9 Designing of a commercial batch fractionating column based on the developed method

4.10 Azeotropic distillation
 4.10.1 Behaviour of solvents

4.11 Process for separating \(\alpha \)-pinene from \(\beta \)-pinene
CHAPTER 5 PROCESS DEVELOPMENT 146-182

5.1 Process development of corn mint oil
5.2 Material and methods
 5.2.1 Oil collection
 5.2.2 Freezing
 5.2.3 Rectification
 5.2.4 Chemical reaction and treatments
 5.2.5 Oil analysis
 5.2.6 Storage of oil

5.3 Result and discussion

CHAPTER 6 MICROBIAL TRANSFORMATION OF 183-204 α-PINENE AND 1-LIMONENE FORM MINT OIL

6.1 Introduction
6.2 Material & methods
 6.2.1 Microorganism isolation and characterization
 6.2.2 Screening of hydrocarbon degrading microorganism
 6.2.3 Microbial treatment of terpenes
 6.2.3a Microbs
 6.2.3b Culture media
 6.2.3c Treatments of terpene
 6.2.4 Recovery of biotransformed product
 6.2.5 Identification of biotransformed product
 6.2.5a Gas liquid chromatography (GLC)
 6.2.6 Tolerance of microbes

6.3 Result and discussion.

CHAPTER 7 UTILIZATION OF SPENT RESIDUE 205-251

7.1 Biogas from spent residue (Mentha arvensis)
 7.1.1 Introduction
 7.1.2 Possible mechanism of production of biogas from spent residue
 7.1.3 Material and methods
 7.1.3a Substrate
 7.1.3b Operation of digester
 7.1.3c Monitoring of stimulated digester
 7.1.3d Gas analysis
 7.1.3e Constituents analysis
 7.1.3f Retention time
 7.1.3g Hydraulic retention time
 7.1.4 Result and discussion
 7.1.5 Designing of commercial scale biogas digester
 7.1.5a Selection of biogas plant site
 7.1.5b Estimation of biogas requirement
 7.1.5c Estimation of biomass requirement
 7.1.5d Selection of digester capacity
 7.1.5e Estimation of gas holder size
 7.1.5f For movable drum type digester
 7.1.5g Estimation of heat requirement
 7.1.5h Estimation of heat losses
 7.1.5i Estimation of slurry displacement parameters
 7.1.5j Computation of slurry displacement in inlet and outlet tank
 7.1.5k Length ‘l’ and breath ‘b’ of the inlet and outlet tank
 7.1.5l Computation of dome height
 7.1.5m Estimation of the radius of dome
 7.1.5n Determination of H’ for the curved bottom digester
 7.1.5o Size of the opening in inlet and outlet tank plant
7.1.5p Summary
7.1.5q Conclusion
7.1.6 Decision between fixed dome and movable drum biogas plant
7.1.7 Procedure for constructing fixed dome type biogas
7.1.7a Collection of material
7.1.7b Marking of digester pit
7.1.7c Excavation of the digester pit
7.1.7d Pouring the foundation slap
7.1.7e Digester pit brick work
7.1.7f Construction of inlet and outlet tanks
7.1.7g Back-filling of digester pit wall
7.1.7h Building of dome
7.1.7i Plastering of surface
7.1.7j Assembling of hatch cover
7.2 Mushroom production from organic spent residue
7.2.1 Introduction
7.2.2 Chemistry of lignocellulosic wastes
7.2.3 Nutritional value
7.2.3a Protein content
7.2.3b Minerals
7.2.3c Vitamins
7.2.3d Medicinal value
7.2.4 Materials and methods
7.2.4a Maintainance of culture
7.2.4b Cleaning and sterilization
7.2.4c Innoculation
7.2.4d Spawn preparation
7.2.4e Mother spawn preparation
7.2.4f Sterilization
7.2.4g Inoculation with commercial spawn
7.2.4h Growth fungus on substrate
7.2.5 Mushroom cultivation
7.2.5a Preparation of compost
7.2.5b Supplementation at spawing
7.2.5c Casing
7.2.5d Cropping condition
7.2.5e Picking of mushroom
7.2.6 Result and discussion

CHAPTER 8 TECHANO-ECONOMIC FEASIBILITY 252-284
STUDY OF MINT/CYMBOPOGOAN CROPS

8.1 Introduction
8.2 Economic feasibility of mint oil production
8.2.1 Basis of study
8.2.2 Result summary
8.2.3 Sensitivity analysis for mint oil production
8.2.4 Conclusion
8.2.5 Project viability
8.3 Techano-Economic feasibility of crude mint oil processing
8.3.1 Executive summary
8.3.2 Introduction
8.3.3 Basis of study
8.3.4 Mint oil processing
8.3.5 Process economics
8.3.6 Project economics of *Mentha* oil processing
8.3.7 Result summary
8.3.8 Sensitivity analysis

8.4 Techno-Economic feasibility of mint terpene processing
 8.4.1 Executive summary
 8.4.2 Introduction
 8.4.3 Processing of mint terpene
 8.4.4 Basis of study
 8.4.5 Process economics
 8.4.6 Project economics of mint terpene processing
 8.4.7 Result summary
 8.4.8 Sensitivity analysis

8.5 Economics of palmarosa oil production
 8.5.1 Result summary
 8.5.2 Sensitivity analysis for palmarosa oil production
 8.5.3 Conclusion
 8.5.4 Economic feasibility of palmarosa oil production

8.6 Economics of oyster mushroom (*Pleurotus* sp.) cultivation from spent residue
 8.6.1 Project infrastructure
 8.6.2 Layout plant of a mushroom farm
 8.6.3 Sensitivity analysis for mushroom production