CONTENTS

Abbreviations i-ii
List of tables iii-vi
List of figures vii-x
CHAPTER I : INTRODUCTION 1-15

CHAPTER II : REVIEW OF LITERATURE 17-69

2.1. Oilseeds, world wide productivity and uses
2.2. Nutrient requirements for enhanced agricultural productivity of oilseed crops
2.3. Consumption of chemical fertilizers
2.4. The role of nutrient management in increasing oilseeds productivity
2.5. Nutrient use efficiency, nutrient uptake and assimilation in oilseed crops
2.6. Nitrogen and sulphur metabolism in oil seed crops
2.7. Fertilizer application on oil seed crops in relation to its growth, productivity and yield
 2.7.1. Effect of nitrogen and sulphur on crop yield and oil quality of oil crops
 2.7.2. Yield attributes and yield
 2.7.3. Oil content and oil quality
 2.7.4. Effect of phosphorus, potassium and micronutrients on growth and productivity of oil crops
 2.7.5. Effect of salt stress on growth and productivity of oil crops
2.8. Nutrient losses : environmental and health hazards
2.9. Non-conventional fertilizers in oilseed crops
 2.9.1. Biofertilizers
 2.9.2. Farm yard manure (FYM) and other organic fertilizers
2.10. Need for slow release fertilizers (SRFs)
2.11. Slow (controlled) release fertilizers offer better alternative to soluble fertilizers and are safer for plants and the environment
2.12. Types of slow release fertilizer (SRF)
 2.12.1. Coated
 2.12.2. Uncoated Fertilizers
 2.12.3. Chemically altered or synthetic organic fertilizer
 2.12.4. Natural organic fertilizer
 2.12.5. Nuricote
 2.12.6. Nutri-Pak
 2.12.7. Osmocote/Polymeric resin
 2.12.8. Polyon
 2.12.9. Supergranules
 2.12.10. Stabilized inhibitors
 2.12.11. Nitamin
 2.12.12. Glass fertilizers
 2.12.13. Neem Cake Coated Urea
 2.12.14. Different SRF studies on different crops

2.13. Effect of SRFs on different crops

CHAPTER III: MATERIALS AND METHODS

3.1. Seed Source
3.2. Laboratory based experiment
 3.2.1. Culture room-based experiments for optimization of need for chemical fertilizer supply
3.3. Preparation of slow release fertilizer granules
3.4. Estimation of released ammonium and sulphate from slow nutrient releasing granules in wet soil
 3.4.1. Release of ammonium
 3.4.2. Release of Sulphate
3.5. Field-based experiments for the application of slow release fertilizer granules
 3.5.1. Experimental site and location
 3.5.2. Climate and Weather
 3.5.3. Plot design and plot experiments
3.6. Soil Analysis
 3.6.1. Physiological analysis of soil
 3.6.1.1. Hydrogen ion concentration (pH)
 3.6.1.2. Electrical conductivity (EC)
 3.6.2. Physiochemical Analysis of Soil
 3.6.2.1. Estimation of organic carbon (OC)
 3.6.2.2. Estimation of available nitrogen
3.6.2.3. Estimation of available phosphorus
3.6.2.4. Estimation of available potassium
3.6.2.5. Estimation of available sulphate

3.7. Preparation of field
 3.7.1. Sowing
 3.7.2. Thinning and weeding
 3.7.3. Irrigation
 3.7.4. Harvesting and threshing

3.8. Physiological analysis of growth
 3.8.1. Periodic growth studies
 3.8.2. Shoot length and root length (cm)
 3.8.3. Number of leaves and number of side branches per plant
 3.8.4. Days taken to flower initiation, fruiting and maturity
 3.8.5. Fresh weight determination
 3.8.6. Dry weight determination

3.9. Yield and yield attributes
 3.9.1. Number of side branches per plant
 3.9.2. Number of siliquae/capsule per plant
 3.9.3. Length of siliqua/capsule(cm)
 3.9.4. Number of seeds per siliqua/capsule
 3.9.5. 1000-Seed weight (g)
 3.9.6. Seed yield per plant (g)
 3.9.7. Seed yield per hectare (kg/ha)

3.10. Biochemical analysis
 3.10.1. Estimation of free ammonium
 3.10.2. Estimation of total soluble protein
 3.10.3. Estimation of Glutamine Synthetase Activity (G S; E.C. 6.3.1.2)
 3.10.4. Estimation of nitrogen content (%)
 3.10.5. Estimation of sulphur content (%)
 3.10.6. Estimation of protein content (%)

3.11. Quality analysis
 3.11.1. Oil content
 3.11.2. Isolation of Essential oils of Mentha piperita
 3.11.3. Total oil yield
 3.11.4. Fatty acid composition

3.12. Salinity stress creation

3.13. Soil Analysis

3.14. Cost Analysis

3.15. Statistical Analysis
4. A. Selecting nutrients for slow release fertilizers (SRFs) for Indian mustard *Brassica juncea* (L)

1. Effect of nitrogen (N), sulphur (S) and boron (B) on growth and ammonia assimilation in Indian mustard (*Brassica juncea* L.) in laboratory conditions

2. Release of NH$_4^+$ and sulphate from slow release fertilizers (SRGs) in wet soil in laboratory conditions
 2.1. Release of NH$_4^+$
 2.2. Release of sulphate

3. Metrological data to reveal environmental conditions during field experiments

4. Performance of various slow release fertilizers (SRFs) granules, to select the best SRF formulation for Indian mustard in natural field conditions

5. Performance of SRFs on vegetative growth, yield and oil quality of Indian mustard in experimental plot
 5.1. Root and shoot length
 5.2. Plant fresh and dry weight
 5.3. Ammonia Assimilation
 5.4. Yield, productivity and quality of the produce
 5.5. Oil quality

6. Effects of SRFs based on biofertilizer (*Azotobacter* : non-symbiotic N$_2$ fixing rhizobacteria)

7. Soil enrichment by SRFs

8. Effect of SRFs on vegetative growth, yield and oil quality of Indian mustard in salt stress

9. Effects of SRFs based on biofertilizer (*Azotobacter* : non-symbiotic N$_2$ fixing rhizobacteria), in salt stress

4. B. Slow Release fertilizers (SRFs) for sesame (*Sesamum indicum* L)

10. Effect of nitrogen (N) and sulphur (S) on growth and ammonia assimilation in sesame (*Sesamum indicum* L) in laboratory conditions

11. Performance of SRFs and based on chemical fertilizers or biofertilizer (*Azotobacter* : non-symbiotic N$_2$ fixing rhizobacteria) on vegetative growth, yield and oil quality of sesame in experimental plots
 11.1. Root length and shoot length
 11.2. Plant fresh and dry weight
4.11.3. Ammonia assimilation
4.11.4. Yield, productivity and quality of the produce
4.11.5. Oil quality
4.12. Soil enrichment by SRFs
4.13. Performance of SRFs based on chemical fertilizers or biofertilizer (Azotobacter : non-symbiotic N₂ fixing rhizobacteria) on vegetative growth, yield and oil quality of sesame in salt stress

4. C. Slow Release fertilizers (SRFs) for Mentha (Mentha piperita L)

4.14. Performance of SRFs based on chemical fertilizers or biofertilizer (Azotobacter : non-symbiotic N₂ fixing rhizobacteria) on vegetative growth, total biomass and oil quality of mentha in experimental plots
4.14.1. Shoot length
4.14.2. Number of side branch per plant
4.14.3. Plant fresh and dry weight
4.14.4. Leaf fresh and dry weight
4.14.5. Oil quality

4.15. Performance of SRFs and SRFs based on biofertilizer on (Azotobacter : non-symbiotic N₂ fixing rhizobacteria) on vegetative growth, yield and oil quality of mentha in salt stress

4.16. Soil enrichment by SRFs
4.17. Cost Analysis

CHAPTER V : DISCUSSION 193-208

CHAPTER VI : SUMMARY AND CONCLUSIONS 209-212

BIBLIOGRAPHY 213-236