3 Periodic and localized solutions of long wave-short wave resonance interaction equation

3.1 Introduction

The interaction of long waves and short waves play an important role in fluid mechanics. One particular example of such interactions can be considered as a degenerate case of the triad resonance. The required condition for such interaction is that the phase velocity of the long wave should match with the group velocity of the short wave. A simple scenario is the propagation of waves in a two-layer fluid, where the long and short components are the interfacial and surface waves respectively. The consideration of such long short resonance interaction was extended to (2+1) dimensions by Oikawa [106] by constructing long wave-short wave resonance interaction (LSRI) equation. In this chapter, we wish to consider the existence of localized structures in the long wave short
wave resonance interaction equation of the form

\[i(S_t + S_y) - S_{xx} + LS = 0, \quad (3.1a) \]

\[L_t = (2SS^*)_x, \quad (3.1b) \]

where the fields \(S(x, y, t) \) and \(L(x, y, t) \) denote short surface wave packets and long interfacial waves, respectively, while * stands for complex conjugation. Note that here \(S \) is a complex scalar field, while \(L \) is a real scalar field. The above equation has been recently studied \([107]\) and its positon and one dromion solutions have been generated through Hirota method. However, no further general solutions could be constructed through this procedure for Eqs. (3.1). In this chapter, through Painlevé Truncation Approach (PTA) we generate a rather extended class of generic solutions \([140]\) of physical interest. For this purpose, first we carry out the singularity structure analysis to the LSRl equation and confirm its Painlevé nature. We utilize the local Laurent expansion of the general solution and truncate it at the constant level term (Painlevé truncation approach) and obtain solutions in terms of arbitrary functions. Through this procedure we generate various periodic and exponentially localized solutions to Eq. (3.1). The novelty here is that the solution is generated through a very simple procedure but the solution obtained is rich in structure because of the arbitrary functions \([127, 129, 133, 170–172]\) present in the solution.
3.2 Singularity structure analysis

To explore the singularity structure of Eq. (3.1), we rewrite $S = q$ and $S^* = r$ to obtain the following set of coupled equations,

\begin{align}
 i(q_t + q_y) - q_{xx} + Lq &= 0, \\
 -i(r_t + r_y) - r_{xx} + Lr &= 0, \\
 L_t &= (2qr)_x.
\end{align}

We now effect a local Laurent expansion in the neighbourhood of a noncharacteristic singular manifold $\phi(x, y, t) = 0$, $\phi_x \neq 0$, $\phi_y \neq 0$. Assuming the leading orders of the solutions of Eq. (3.2) to have the form

$$q = q_0\phi^\alpha, r = r_0\phi^\beta, L = L_0\phi^\gamma,$$

where q_0, r_0 and L_0 are analytic functions of (x, y, t) and α, β, γ are integers to be determined, we substitute (3.3) into (3.2) and balance the most dominant terms to obtain

$$\alpha = \beta = -1, \gamma = -2,$$

with the condition

$q_0r_0 = \phi_x\phi_t, L_0 = 2\phi_x^2$.

(3.4)
3.2 Singularity structure analysis

Now, considering the generalized Laurent expansion of the solutions in the neighbourhood of the singular manifold,

\[q = q_0 \phi^\alpha + \ldots + q_j \phi^{r+\alpha} + \ldots, \quad (3.6a) \]
\[r = r_0 \phi^\beta + \ldots + r_j \phi^{r+\beta} + \ldots, \quad (3.6b) \]
\[L = L_0 \phi^\gamma + \ldots + L_j \phi^{r+\gamma} + \ldots, \quad (3.6c) \]

the resonances which are the powers at which arbitrary functions enter into (3.6) can be determined by substituting (3.6) into (3.2). Vanishing of the coefficients of \((\phi^{j-3}, \phi^{j-3}, \phi^{j-3})\) lead to the condition

\[
\begin{pmatrix}
-j(j - 3) \phi_x^2 & 0 & q_0 \\
0 & -j(j - 3) \phi_x^2 & r_0 \\
2(j - 2)r_0 \phi_x & 2(j - 2)q_0 \phi_x & -(j - 2) \phi_t \\
\end{pmatrix}
\begin{pmatrix}
q_j \\
r_j \\
L_j \\
\end{pmatrix} = 0. \quad (3.7)
\]

From Eq. (3.7), one gets the resonance values by requiring the following determinant to vanish:

\[
\begin{vmatrix}
-j(j - 3) \phi_x^2 & 0 & q_0 \\
0 & -j(j - 3) \phi_x^2 & r_0 \\
2(j - 2)r_0 \phi_x & 2(j - 2)q_0 \phi_x & -(j - 2) \phi_t \\
\end{vmatrix} = 0. \quad (3.8)
\]

On expanding, we get

\[-j(j - 3) \phi_x^2(j(j - 3)(j - 2) \phi_t^2 \phi_x - 2(j - 2)q_0 r_0 \phi_x) + q_0(2j(j - 2)(j - 3)r_0 \phi_x^2) = 0 \quad (3.9)\]
Now making use of the expression for q_0, r_0, L_0 from (3.5), we finally get the resonance values as

$$j = -1, 0, 2, 3, 4.$$ \hfill (3.10)

The resonance at $j = -1$ naturally represents the arbitrariness of the manifold $\phi(x, y, t) = 0$. In order to prove the existence of arbitrary functions at the other resonance values, we now substitute the full Laurent series

$$q = q_0 \phi^\alpha + \sum_j q_j \phi^{j+\alpha},$$ \hfill (3.11a)

$$b = r_0 \phi^\beta + \sum_j r_j \phi^{j+\beta},$$ \hfill (3.11b)

$$L = L_0 \phi^\gamma + \sum_j L_j \phi^{j+\gamma}$$ \hfill (3.11c)

into Eq. (3.2). Now collecting the coefficients of $(\phi^{-3}, \phi^{-3}, \phi^{-3})$ and solving the resultant equation, we obtain Eq. (3.5), implying the existence of a resonance at $j = 0$.

Similarly collecting the coefficients of $(\phi^{-2}, \phi^{-2}, \phi^{-2})$ and solving the resultant equations by using the Kruskal's ansatz, $\phi(x, y, t) = x + \psi(y, t)$, we get

$$q_1 = \frac{1}{2} [i q_0 (\psi_x + \psi_y) - 2 q_{0x}],$$ \hfill (3.12a)

$$r_1 = \frac{1}{2} [-i r_0 (\psi_x + \psi_y) - 2 r_{0x}],$$ \hfill (3.12b)

$$L_1 = 0.$$ \hfill (3.12c)
Collecting the coefficients of \(\phi^{-1}, \phi^{-1}, \phi^{-1} \), we have

\[
i(q_{01} + q_{0y}) - q_{0xx} + L_0 q_2 + L_1 q_1 + L_2 q_0 = 0, \tag{3.13a}
\]
\[
-i(r_{01} + r_{0y}) - r_{0xx} + L_0 r_2 + L_1 r_1 + L_2 r_0 = 0, \tag{3.13b}
\]
\[
L_{1t} = 2[q_0 r_1 + r_0 x q_1 + q_1 r_0 + q_1 r_0 x] = 0. \tag{3.13c}
\]

From (3.13a) and (3.13b), we can eliminate \(L_2 \) to obtain a single equation for the two unknowns \(q_2 \) and \(r_2 \),

\[
L_0 (r_0 q_2 - q_0 r_2) - (r_0 q_{0xx} - q_0 r_{0xx}) + i(r_0 (q_{01} + q_{0y}) + q_0 (r_{01} + r_{0y})) = 0 \tag{3.13d}
\]

which ensures that either \(q_2 \) or \(r_2 \) is arbitrary. Obviously \(L_2 \) itself can be obtained either from (3.13a) or (3.13b). Similarly, collecting the coefficients of \((\phi^0, \phi^0, \phi^0) \), we have

\[
i(q_{11} + q_2 \psi_1) + i(q_{1y} + q_2 \psi_y) - (q_{1xx} + 2q_{2x}) + L_2 q_1 + L_3 q_0 = 0, \tag{3.14a}
\]
\[
-i(r_{11} + r_2 \psi_1) - i(r_{1y} + r_2 \psi_y) - (r_{1xx} + 2r_{2x}) + L_2 r_1 + L_3 r_0 = 0, \tag{3.14b}
\]
\[
L_{2t} + L_3 \psi_i = 2[q_0 r_2 + (q_1 x + q_2) r_1 + (q_2 x + 2q_3) r_0 + r_0 q_2 + (r_{1x} + r_2) q_1 + (r_{2x} + 2r_3) q_0]. \tag{3.14c}
\]

We rewrite the Eqs. (3.14a) and (3.14b) as

\[
L_3 = \frac{1}{q_0} (-i(q_{11} + q_2 \psi_1) - i(q_{1y} + q_2 \psi_y) + (q_{1xx} + 2q_{2x}) - L_2 q_1), \tag{3.14d}
\]
\[
L_3 = \frac{1}{r_0} (i(r_{11} + r_2 \psi_1) + i(r_{1y} + r_2 \psi_y) + (r_{1xx} + 2r_{2x}) - L_2 r_1). \tag{3.14e}
\]
Making use of the earlier relations (3.5), (3.12b) and (3.13b), we find that the right hand sides of Eqs. (3.14d) and (3.14e) are equal. Then, we are left with two equations for three unknowns. So, one of the three coefficients q_3, r_3 or L_3 is arbitrary. Collecting finally the coefficients of (ϕ, ϕ, ϕ), we have

\[
(i(q_2t + 2q_3y) + i(q_2y + 2q_3y) - (q_{2xx} + 4q_{3x} + 6q_4) + L_0q_4 + L_2q_2 + L_3q_1 + L_4q_0 = 0, \quad (3.15a)
\]

\[
-i(r_2t + 2r_3y) - i(r_2y + 2r_3y) - (r_{2xx} + 4r_{3x} + 6r_4) + L_0r_4 + L_2r_2 + L_3r_1 + L_4r_0 = 0, \quad (3.15b)
\]

\[
L_{3t} + 2L_4y = 2(q_{0z}r_3 - q_0r_4 + (q_{1x} + q_2)r_2 + (q_{2x} + 2q_3)r_1 + (q_{3x} + 3q_4)r_0 + r_0q_3 - r_0q_4 + (r_{1x} + r_2)q_2 + (r_{2x} + 2r_3)q_1 + (r_{3x} + 3r_4)q_0). \quad (3.15c)
\]

The above set of equations can be rewritten as

\[
4q_4 + q_0L_4 = -i(q_2t + 2q_3y) - i(q_2y + 2q_3y) + (q_{2xx} + 4q_{3x}) - L_2q_2 - L_3q_1, \quad (3.16a)
\]

\[
4r_4 + r_0L_4 = i(r_2t + 2r_3y) + i(r_2y + 2r_3y) + (r_{2xx} + 4r_{3x}) - L_2r_2 - L_3r_1, \quad (3.16b)
\]

\[
4q_0q_4 + 4q_0r_4 - 2L_4y = -2(q_{0z}r_3 + (q_{1x} + q_2)r_2 + (q_{2x} + 2q_3)r_1 + q_{3z}r_0 + r_0q_3 + (r_{1x} + r_2)q_2 + (r_{2x} + 2r_3)q_1 + r_{3z}q_0 + L_{3t}. \quad (3.16c)
\]

By multiplying (3.11) by r_0 and (3.12b) by q_0 and adding the resultant equations we obtain an equation which is same as (3.16c). This suggests that it is enough to consider the first two equations and the third equation is a linear combination of the first two. Thus, in this order we have two determining equations and three unknowns. So, one of the three functions q_4, r_4 or L_4 is
arbitrary. One can proceed further to determine all other coefficients of the Laurent expansions (3.16a) without the introduction of any movable critical singular manifold. Thus, the LSRI equation indeed satisfies the Painlevé property.

3.3 Painlevé truncation approach

To generate the solutions of LSRI equation, we suitably harness the results of the Painlevé analysis. Truncating the Laurent series of the solutions of the LSRI equation at the constant level term, we have the Bäcklund transformation

\[
q = \frac{q_0}{\phi} + q_1, \quad \text{(3.17a)}
\]

\[
r = \frac{r_0}{\phi} + r_1, \quad \text{(3.17b)}
\]

\[
L = \frac{L_0}{\phi^2} + \frac{L_1}{\phi} + L_2. \quad \text{(3.17c)}
\]

Assuming a seed solution given by

\[
q_1 = r_1 = 0, \quad L_2 = L_2(x, y), \quad \text{(3.18)}
\]

we now substitute (3.17) with the above seed solution (3.18) into Eqs. (3.2) to obtain the following system of equations by equating the coefficients of \((\phi^{-3}, \phi^{-3}, \phi^{-3})\),

\[
-2q_0\phi_x^2 + L_0q_0 = 0, \quad \text{(3.19a)}
\]

\[
-2r_0\phi_x^2 + L_0r_0 = 0, \quad \text{(3.19b)}
\]

\[
L_0\phi_t = 2q_0r_0\phi_x. \quad \text{(3.19c)}
\]
Solving the above system of equations, we obtain the leading order coefficients already given by Eq. (3.5), namely $q_0 r_0 = \phi_t \phi_t$ and $L_0 = 2 \phi_t^2$. Now collecting the coefficients ($\phi^{-2}, \phi^{-2}, \phi^{-2}$) we have the following system of equations,

\begin{align}
-iq_0 \phi_t - iq_0 \phi_y + 2q_0 x \phi_x + q_0 \phi_{xx} + L_1 q_0 &= 0, \\
ir_0 \phi_t + ir_0 \phi_y + 2r_0 x \phi_x + r_0 \phi_{xx} + L_1 r_0 &= 0, \\
L_{0t} - L_1 \phi_t &= 2(q_0 r_0)_x.
\end{align}

(3.20a) (3.20b) (3.20c)

From Eq. (3.20c), we have

\[L_1 = -2 \left[\phi_{xx} + \frac{\phi_t \phi_{tx}}{\phi_t} \right] \tag{3.21} \]

Using (3.21) in Eq. (3.20a) or (3.20b), one can easily obtain the relation

\[\frac{q_{0x}}{q_0} = \frac{1}{2} \left[\frac{i(\phi_t + \phi_y) + \phi_{xx} - 2\phi_t \phi_x}{\phi_x} \right] \tag{3.22} \]

On integration, we obtain

\[q_0 = F(y, t) \exp \left[\frac{1}{2} \int \frac{i(\phi_t + \phi_y) + \phi_{xx} - 2\phi_t \phi_x}{\phi_x} \, dx \right] \tag{3.23} \]

where $F(y, t)$ is an arbitrary function of y and t. Obviously the above solution is consistent with (3.20).

Again collecting the coefficients of ($\phi^{-1}, \phi^{-1}, \phi^{-1}$), we have the following set of
3.3 Painlevé truncation approach

equations

\begin{align}
&iq_{0t} + iq_{0y} - q_{0xx} + L_2 q_0 = 0, \quad (3.24a) \\
&-ir_{0t} - ir_{0y} - r_{0xx} + L_2 r_0 = 0, \quad (3.24b) \\
&L_{1t} = 0. \quad (3.24c)
\end{align}

Using (3.21), we rewrite Eq. (3.24c) to obtain the trilinear form

\[\phi_t^2 \phi_{xtt} - \phi_x \phi_{tx} \phi_{tt} + \phi_{xx} \phi_t + \phi_x \phi_{tx} \phi_t = 0. \quad (3.25) \]

The structure of the trilinear Eq. (3.25) suggests that a specific solution can be given in the form

\[\phi = \phi_1(x,y) + \phi_2(y,t), \quad (3.26) \]

where \(\phi_1(x,y) \) and \(\phi_2(y,t) \) are arbitrary functions in the indicated variables. Using (3.26) in Eqs. (3.21) and (3.23), one can obtain the functions \(q_0 \) and \(L_1 \) as

\begin{align}
q_0 &= F(y,t) \exp \left[\frac{1}{2} \int \frac{i(\phi_{2t} + \phi_{2y} + \phi_{2yy}) + \phi_{1xx}}{\phi_{1x}} \, dx \right], \quad (3.27a) \\
L_1 &= -2\phi_{1xx}. \quad (3.27b)
\end{align}

From (3.27b), we find that Eq. (3.24c) is an identity. Using (3.27a), Eqs. (3.24a) and (3.24b) can be reduced to the form

\[\phi_{2tt} + \phi_{2ty} = 0. \quad (3.28) \]
3.3 Painlevé truncation approach

Eq. (3.28) can be solved readily to express the submanifold \(\phi_2(y, t) \) in the form

\[
\phi_2 = F_2(y) + F_3(t - y),
\]

(3.29)

where \(F_2(y) \) and \(F_3(t - y) \) are arbitrary functions in \(y \) and \((t - y) \), respectively.

Finally, collecting the coefficients of \((\phi^0, \phi^0, \phi^0)\), we have only one equation

\[
L_{2t} = 0.
\]

(3.30)

Using (3.24a) for \(L_2 \), (3.30) reduces to the form

\[
(F_{tt} + F_{ty})F + (F_t + F_y)F_t = 0.
\]

(3.31)

Eq. (3.31) can be solved to obtain the form for \(F(y, t) \) as

\[
F(y, t) = F_1(t - y).
\]

(3.32)

Thus the LSRI Eq. (3.1) has been solved by the truncated Painlevé approach and the fields \(q \) and \(r \) can be given in terms of the arbitrary functions as

\[
q = \frac{\phi_1(x, y) + F_2(y) + F_3(t - y)}{\phi_1 + \phi_2},
\]

(3.33a)

\[
r = \frac{\phi_1 \phi_2}{q_0 (\phi_1(x, y) + F_2(y) + F_3(t - y))},
\]

(3.33b)

and

\[
L = \frac{2\phi_1^2}{(\phi_1(x, y) + F_2(y) + F_3(t - y))^2} - \frac{2\phi_1 \phi_2}{(\phi_1(x, y) + F_2(y) + F_3(t - y))} + L_2,
\]

(3.34)
where

\[L_2 = \int \frac{1}{2} \left(\frac{i(\phi_{1yy} + F_{2yy}) + \phi_{1zxy}}{\phi_{1x}} \right) \left(\frac{i(\phi_{1y} + F_{2y}) + \phi_{1zx}}{\phi_{1z}} \right) dx \]
\[+ \frac{1}{2} \left(\frac{i\phi_{1xy} + \phi_{1zxx}}{\phi_{1x}} \right) - \frac{1}{4} \left(\frac{\phi_{1y} + F_{2y}}{\phi_{1z}} \right)^2 + \frac{\phi_{1xx}^2}{\phi_{1z}^2}. \]

Here the function \(\phi_2(y, t) \) is given by the Eq. (3.29) and \(q_0 \) by (3.27a), while the functions \(\phi_1(x, y), F_2(y), F_3(t - y) \) are themselves arbitrary in the indicated variables.

3.4 Novel exact solutions of LSRI equation

Now we make use of the above truncated Laurent expansion solution to obtain exact solutions of the LSRI Eq. (3.1) for the variables \(S(x, y, t) \) and \(L(x, y, t) \).

Taking into account our notation in Eq. (3.2), that is \(q = S(x, y, t) \) and \(r = S^*(x, y, t) \), we have \(q = r^* \) as far as Eq. (3.1) is concerned. Using this condition in Eqs. (3.33a) and (3.33b), we obtain the condition

\[[F_1(t - y)]^2 = F_3. \]
(3.36)

Thus, from the results of the previous section, we find that the solution of the original variable \(S(x, y, t) \) takes the form

\[S(x, y, t) = \frac{\sqrt{F_3 \phi_{1z} e^{\int \frac{1}{2} i(\phi_{1y} + F_{2y}) dx}}}{(\phi_1(x, y) + F_2(y) + F_3(t - y))}, \]
(3.37)
while its squared magnitude takes the form

$$|S|^2 = \frac{\phi_1 z F_3 t}{(\phi_1(x, y) + F_2(y) + F_3(t - y))^2}. \quad (3.38)$$

The form of $L(x, y, t)$ remains the same as given in Eq. (3.34). With the above general form of the solutions, we now identify interesting classes of exact solutions to Eq. (3.1), including periodic and localized solutions by giving specific forms for the three arbitrary functions $\phi_1(x, y), F_2(y)$ and $F_3(t - y)$.

3.4.1 Periodic solutions and localized dromion solutions

Let us now choose the arbitrary functions ϕ_1 and F_3 to be Jacobian elliptic functions, namely sn or cn functions. The motivation behind this choice of arbitrary function stems from the fact that the limiting forms of these functions happen to be localized functions. Hence, a choice of cn and sn functions can yield periodic solutions which are more general than exponentially localized solutions (dromions). We choose, for example,

$$\phi_1 = sn(ax + by + c_1; m_1), \quad F_2 = 4, \quad F_3 = sn(t - y + c_2; m_2) \quad (3.39)$$

so that

$$S(x, y, t) = \frac{\sqrt{\operatorname{cn}(u_1; m_1)\operatorname{dn}(u_1; m_1)\operatorname{cn}(u_2; m_2)\operatorname{dn}(u_2; m_2)}}{(4 + \operatorname{sn}(u_2; m_2) + \operatorname{sn}(u_1; m_1))} e^{ik_0 z}, \quad (3.40)$$

where $u_1 = ax + by + c_1$ and $u_2 = t - y + c_2$. In Eqs. (3.39) and (3.40), the quantities m_1 and m_2 are the modulus parameters of the respective Jacobian elliptic functions while a, b, c_1 and c_2 are arbitrary constants. The corresponding
expression for $|S(x, y, t)|^2$ takes the form

$$|S|^2 = \frac{|acn(u_1; m_1)dn(u_1; m_1)cn(u_2; m_2)dn(u_2; m_2)|}{(4 + sn(u_2; m_2) + sn(u_1; m_1))^2}. \quad (3.41)$$

The profile of the above solution for the parametric choice $a = b = 1, c_1 = c_2 = 0, m_1 = 0.2, m_2 = 0.3, t = 0$ is shown in Fig. 3.1(a). Note that the periodic wave moves with unit phase velocity.

3.4.1.1 (1,1) dromion solution

As a limiting case of the periodic solution given by Eq. (3.41), when $m_1, m_2 \to 1$, the above solution degenerates into an exponentially localized solution (dromion). Noting that $cn(u; 1) = dn(u; 1) = sech u$ and $sn(u; 1) = tanh u$, the limiting forms corresponding to (1,1) dromion take the expressions

$$S = \frac{\sqrt{a}sech(t - y + c_2)sech(ax + by + c_1)}{4 + \tanh(ax + by + c_1) + \tanh(t - y + c_2)}e^{\frac{iv}{2a}x} \quad (3.42)$$

and

$$|S|^2 = \frac{asech^2(t - y + c_2)sech^2(ax + by + c_1)}{(4 + \tanh(ax + by + c_1) + \tanh(t - y + c_2))^2}. \quad (3.43)$$

The variable L then takes the form (using expression (3.34))

$$L = \frac{2a^2sech^4(ax + by + c_1)}{(4 + \tanh(ax + by + c_1) + \tanh(t - y + c_2))^2} - \frac{2sech^2(t - y + c_2)}{(4 + \tanh(ax + by + c_1) + \tanh(t - y + c_2))^2} + \tanh(ax + by + c_1) - itanh(ax + by + c_1) + tanh^2(ax + by + c_1) - sech^2(ax + by + c_1) - \frac{1}{4} \quad (3.44)$$
Schematic form of the (1,1) dromion for the parametric choice $a = b = 1, c_1 = c_2 = 0$ is shown in Fig. 3.1(b). Again note that the dromion travels with unit velocity in a diagonal direction in the $x - y$ plane. One can check that the (1,1) dromion obtained by Lai and Chow in reference [107] using the Hirota's bilinear method is a special case of the above solution (3.43) by fixing the parameters a, b, c_1 and c_2 suitably. However the later method is unable to give more general solutions (see also Appendix A).

Figure 3.1: (a) Elliptic function solution (3.41) (b) Localized dromion solution (3.43) for the variable $|S(x, y, t)|^2$ (c) the corresponding magnitude of the variable $L(x, y, t)$ given by (3.44)
3.4 Novel exact solutions of LSRI equation

3.4.2 More general periodic solutions and higher order dromion solutions

3.4.2.A Periodic solution and (2,1) dromion

Next we obtain more general periodic solution by choosing further general forms for the arbitrary functions. As an example, we choose

\[\phi_1 = d_1 \text{sn}(c_1 + a_1 x + b_1 y; m_1) + d_2 \text{sn}(c_2 + a_2 x + b_2 y; m_2), \]
\[F_2 = 4, \quad F_3 = d_3 \text{sn}(c_3 + t - y; m_3). \]

(3.45)

where \(a_i, b_i, c_i \) and \(d_i \) are arbitrary constants and \(m_i \)'s are modulus parameters (\(i = 1, 2, 3 \)). Then

\[|S|^2 = \frac{q_1}{q_2}, \]

(3.46)

where

\[q_1 = |(d_1 a_1 \text{cn}(u_1; m_1) \text{dn}(u_1; m_1) + d_2 a_2 \text{cn}(u_2; m_2) \text{dn}(u_2; m_2) d_3 \text{cn}(u_3; m_3) \text{dn}(u_3; m_3))|, \]

\[q_2 = (4 + d_1 \text{sn}(u_1; m_1) + d_2 \text{sn}(u_2; m_2) + d_3 \text{sn}(u_3; m_3))^2, \]

\(u_1 = c_1 + a_1 x + b_1 y, \quad u_2 = c_2 + a_2 x + b_2 y \) and \(u_3 = c_3 + t - y \) with corresponding expressions for \(S(x, y, t) \).

The profile of the above solution for the parametric choice \(a_1 = 1, \quad b_1 = 1, \quad a_2 = 1, b_2 = -1, d_1 = 5, \quad d_2 = 4, \quad d_3 = 0.5, \quad c_1 = 0, \quad c_2 = c_3 = 5, \quad m_1 = 0.2, \quad m_2 = 0.3, \quad m_3 = 0.4, \quad t = 0 \) is shown in Fig. 3.2(a). As \(m_1, m_2, m_3 \rightarrow 1 \), the above solution, namely Eq. (3.46), degenerates into a (2,1) dromion solution given by

\[|S|^2 = \frac{(d_1 a_1 \text{sech}^2 u_1 + d_2 a_2 \text{sech}^2 u_2) d_3 \text{sech}^2 u_3}{(4 + d_1 \text{tanh} u_1 + d_2 \text{tanh} u_2 + d_3 \text{tanh} u_3)^2} \]

(3.47)

where \(u_1 = c_1 + a_1 x + b_1 y, \quad u_2 = c_2 + a_2 x + b_2 y \) and \(u_3 = c_3 + t - y \). The dromion interaction for the parametric choice \(a_1 = b_1 = a_2 = 1, \quad b_2 = -1, \quad d_1 = 0.5, \quad d_2 = 3.2, \quad d_3 = 1.2 \).
$d_3 = 1, c_1 = c_2 = c_3 = 0$ is shown in Figs. 3.2(b-d) for different time intervals. Here both the dromions travel with equal velocity but along opposite diagonals in the $x - y$ plane. The interaction is elastic for this choice. The variable L can be evaluated again using Eq. (3.34), which we desist from presenting here.

Figure 3.2: (a) Elliptic function solution (3.46), (b-d) (2,1) dromion solution (3.47) and its interaction at time intervals (b) $t = -10$, (c) $t = 0$ and (d) $t = 10$
3.4 Novel exact solutions of LSRI equation

3.4.2.B Periodic solution and (2,2) dromion

Another example for more general periodic solution is given by choosing

\[\phi_1 = d_1 \text{sn}(c_1 + a_1x + b_1y; m_1) + d_2 \text{sn}(c_2 + a_2x + b_2y; m_2), \]
\[F_2 = 4, \quad F_3 = d_3 \text{sn}(c_3 + t - y; m_3) + d_4 \text{sn}(c_4 + t - y; m_4) \]

In Eq. (3.48), we choose \(m_1, m_2, m_3 \rightarrow 1 \), to obtain (2,2) dromion solution given by

\[|S|^2 = \frac{(d_1a_1 \text{sech}^2 u_1 + d_2a_2 \text{sech}^2 u_2)(d_3 \text{sech}^2 u_3 + d_4 \text{sech}^2 u_4)}{(4 + d_1 \text{tanh} u_1 + d_2 \text{tanh} u_2 + d_3 \text{tanh} u_3 + d_4 \text{tanh} u_4)^2}, \]

where \(u_1 = c_1 + a_1x + b_1y, \ u_2 = c_2 + a_2x + b_2y, \ u_3 = c_3 + t - y \) and \(u_4 = c_4 + t - y \).

The solution of (2,2) dromion for the parametric choice \(a_1 = b_1 = a_2 = b_2 = 1, d_1 = 0.5, d_2 = d_3 = d_4 = 1, c_1 = c_2 = c_3 = c_4 = 0 \) is plotted in Fig. 3.3 for various time intervals. We find that there are two sets of dromions, each set containing two dromions one followed by the other. The two sets of dromions travel with same velocity in opposite diagonals of the \(x - y \) plane. The dromions interact and move forward as time progresses.

3.4.2.C \((M,N)\) dromion

To generalize the above solutions, we choose

\[\phi_1 = \sum_{j=1}^{M} d_j \text{sn}(c_j + a_jx + b_jy; m_j), \]
\[F_2 = 4, \quad F_3 = \sum_{k=1}^{N} d_k \text{sn}(c_k + t - y; m_k) \]
3.4 Novel exact solutions of LSRI equation

where \(a, b, c, d, c, d, k \) are arbitrary constants and all \(m \)'s and \(m_k \)'s take values between 0 to 1 for periodic solutions and equal to 1 for dromion solutions. We proceed as above to construct periodic and dromion solutions respectively as

\[
|S|^2 = \frac{\left| \sum_{j=1}^{M} d_j \text{cn}(u_1; m_j) \text{dn}(u_1; m_j) \sum_{k=1}^{N} d_k \text{cn}(u_2; m_k) \text{dn}(u_2; m_k) \right|}{4 + \sum_{j=1}^{M} d_j \text{sn}(u_1; m_j) + \sum_{k=1}^{N} d_k \text{sn}(u_2; m_k)}
\]

(3.51)

and

\[
|S|^2 = \frac{\sum_{j=1}^{M} d_j a_j \text{sech}^2(c_j + a_j x + b_j y) \sum_{k=1}^{N} d_k \text{sech}^2(c_k + t - y)}{4 + \sum_{j=1}^{M} d_j \text{tanh}(c_j + a_j x + b_j y) + \sum_{k=1}^{N} d_k \text{tanh}(c_k + t - y)}
\]

(3.52)

where \(u_1 = c_j + a_j x + b_j y \) and \(u_2 = c_k + t - y \).

3.4.3 Instanton type solutions

Another type of elliptic function solution can be chosen as

\[
\phi_1 = \text{sn}(ax + c_1; m_1) \text{cn}(by + c_2; m_2), \quad F_2 = 4, \quad F_3 = \text{sn}(t - y + c_3; m_3).
\]

(3.53)

Then

\[
|S|^2 = \frac{|\text{acn}(u_1; m_1) \text{dn}(u_1; m_1) \text{cn}(u_2; m_2) \text{cn}(u_3; m_3) \text{dn}(u_3; m_3)|}{(4 + \text{sn}(u_1; m_1) \text{cn}(u_2; m_2) + \text{sn}(u_3; m_3))^2}.
\]

(3.54)

where \(u_1 = ax + c_1, u_2 = by + c_2 \) and \(u_3 = t - y + c_3 \). The profile of the above periodic solution for the parametric choices \(a = 1, b = -1, c_1 = c_2 = c_3 = 0, m_1 = 0.2, m_2 = 0.3, m_3 = 0.4 \) is shown in Fig. 3.4(a).
As $m_1, m_2, m_3 \to 1$, Eq. (3.54) degenerates into an instanton type solution,

$$|S|^2 = \frac{\text{sech}^2(t - y + c_3)\text{sech}(ax + c_1)\text{sech}(by + c_2)}{(4 + \tanh(ax + c_1)\text{sech}(by + c_2) + \tanh(t - y + c_3))^2}. \tag{3.55}$$

Schematic diagram of the instanton solution for the parametric choice $a = 1, b = -1, c_1 = c_2 = 0, c_3 = 0.5$ is shown in Fig. 3.4(b-f) for various time intervals. We can see that the instanton expressed by (3.55), has maximum amplitude at $t = 0$ while the amplitude decays exponentially as time $|t| \to \infty$.

3.4.4 2-instanton solution

A more general form of (3.54) is given by

$$\phi_1 = d_1 \text{sn}(c_1 + a_1 x; m_1)\text{cn}(b_1 y; m_2) + d_2 \text{sn}(c_2 + a_2 x; m_3)\text{cn}(b_2 y; m_4), \tag{3.56a}$$
$$F_2 = 4, F_3 = d_3 \text{sn}(c_3 + t - y; m_5). \tag{3.56b}$$

Then

$$|S|^2 = \frac{f_1}{f_2}. \tag{3.57}$$

Here $f_1 = |(d_1 a_1 \text{cn}(u_1; m_1)\text{dn}(u_1; m_1)\text{cn}(b_1 y; m_2) + d_1 a_2 \text{cn}(u_2; m_3)\text{dn}(u_2; m_3)\text{cn}(b_2 y; m_4))$

$$d_3 \text{cn}(u_3; m_5)\text{dn}(u_3; m_5)|, f_2 = (4 + d_1 \text{sn}(u_1; m_1)\text{cn}(b_1 y; m_2) + d_2 \text{sn}(u_2; m_3)\text{cn}(b_2 y; m_4) +$$

$$d_3 \text{sn}(u_3; m_5))^2, u_1 = c_1 + a_1 x, u_2 = c_2 + a_2 x, \text{and } u_3 = c_3 + t - y. \text{ The above periodic solution for the parametric choices } a_1 = b_1 = a_2 = 1, b_2 = -1, d_1 = d_2 = d_3 = 1, c_1 = c_3 = -5, c_2 = 0, m_1 = 0.2, m_2 = 0.3, m_3 = 0.4, m_4 = 0.2, m_5 = 0.3 \text{ is shown in Fig. 3.5(a).}$$

As $m_1, m_2, m_3, m_4, m_5 \to 1$, Eq. (3.57) degenerates into two instanton solution
3.4 Novel exact solutions of LSRI equation

given by

\[|S|^2 = \frac{(\text{sech}^2(a_1x)\text{sech}(b_1y) + \text{sech}^2(a_2x)\text{sech}(b_2y))\text{sech}^2(t - y)}{(4 + \tanh(a_1x)\text{sech}(b_1y) + \tanh(a_2x)\text{sech}(b_2y) + \tanh(t - y))^2}. \] (3.58)

The time evolution of the solution (3.58) is shown in Fig. 3.5(b-f). Choosing the arbitrary constants appropriately, we have one of the instanton having a maximum amplitude at \(t = -2 \) while the other at \(t = 2 \) and decay exponentially as time \(|t| \to \infty\). To generalize the above solutions, we choose

\[\phi_1 = \sum_{j=1}^{M} d_j \text{sn}(c_j + a_jx; m_j)\text{cn}(f_j + b_jy; n_j), \] (3.59a)

\[F_2 = 4, F_3 = \sum_{k=1}^{N} d_k \text{sn}(c_k + t - y; m_k) \] (3.59b)

where \(a_j, b_j, c_j, d_j, f_j, c_k, d_k \) are arbitrary constants, \(m_j, n_j \) and \(m_k \) take values between 0 and 1. One can construct multi-instanton solution by choosing all the values of \(m_j, n_j \) and \(m_k \) to be equal to 1.

3.4.5 Bounded multiple solitary waves

In the expression (3.38), one can also easily identify bounded multiple solitary waves all moving with the same velocity. For instance, using the Jacobian elliptic function form (3.48) with \(d_2 = 0 \) in the limit \(m_1, m_3, m_4 \to 1 \), one can obtain multiple solitary waves which are bounded. Fig. 3.6 displays the structure of a two-soliton solution expressed by

\[|S|^2 = \frac{1}{3} \frac{\text{sech}^2(\frac{t+y}{3})[\text{sech}^2(t - y + 5) + 2\text{sech}^2(t - y - 5)]}{[\tanh(\frac{t+y}{3}) + 8 + \tanh(t - y + 5) + 2\tanh(t - y - 5)]^2}. \] (3.60)
which corresponds to the selections (see Eq. (3.48))

$$\phi_1 = \frac{1}{2} \tanh \frac{x + y}{3}, \quad F_2 = 4, \quad F_3 = \frac{1}{2} \tanh(t - y + 5) + \tanh(t - y - 5) \quad (3.61)$$

The figure shows that one of the solitary wave follows the other one but both are travelling with equal velocity. Hence, there will not be any interaction between them.

Finally, one can obtain other interesting classes of solutions for different choices of the arbitrary functions in Eqs. (3.37), (3.38) and (3.34).

3.5 Conclusion

In summary, we have investigated the singularity structure of the (2+1) dimensional LSRI equation and confirmed that it satisfies the Painlevé property. The Painlevé truncation approach has been used to construct successfully a very wide class of solutions of the (2+1) dimensional LSRI equation. The rich solution structure of the LSRI equation is revealed because of the entrance of three arbitrary functions in (3.37) and (3.34). Especially, Jacobian elliptic function periodic wave solutions and three special localized structures, namely dromion, dromion type instanton and bounded dromion solutions are given explicitly. However, more general multiple non-bounded dromion solutions whose phase velocities differ from each other have not yet been obtained from the present approach. It appears that one has to solve Eq. (3.25) for more general solutions than the form (3.26) presented in this paper in order to deduce more general solution. This is an open problem at present.
3.6 Appendix A

One dromion solution of long wave-short wave resonance interaction (LSRI) equation through Hirota bilinearization

Here we briefly point out how the (1,1) dromion solution can be obtained through Hirota bilinearization method [107]. To bilinearize Eq. (3.1), we make the transformation

\[S = \frac{g}{f}, \quad L = 2(\log f)_{xx}, \quad (A.1) \]

which can be identified from the Painlevé analysis in Sec. (3.2). The resultant bilinear form is given by

\[(i(D_t + D_y) + D_x^2)g.f = 0, \quad (A.2a) \]

\[D_x D_t f.f = 2gg^* \quad (A.2b) \]

where \(D \)'s are the usual Hirota operators. To generate a (1,1) dromion, one considers the ansatz

\[f = 1 + e^{\psi_1 + \psi_1^*} + e^{\psi_2 + \psi_2^*} + M e^{\psi_1 + \psi_1^* + \psi_2 + \psi_2^*}, \quad (A.3) \]

where

\[\psi_1 = px + qy, \quad (A.4a) \]

\[\psi_2 = \lambda y - \Omega t. \quad (A.4b) \]
Here M is a real constant and p, Ω, λ and q are complex constants. Substituting (A.3) in (A.2), we obtain

$$g = \rho e^{\psi_1 + \psi_2},$$ \hspace{1cm} (A.5a)$$

$$|\rho|^2 = (p + p^*)(q + q^*)(1 - M)$$ \hspace{1cm} (A.5b)$$

and also the conditions $M < 1$, $q = ip^2$ and $\Omega = \lambda$. This is a special case of the dromion we have obtained in (3.43) with the constants $c_1 = c_2 = \frac{1}{2}\log_2^2$ and by choosing $\psi_1 = -(ax + by + c_1)$ and $\psi_2 = -(t - y + c_2)$ and $M = \frac{1}{3}$ where ψ_1, ψ_2 are the real parts of ψ_1, ψ_2 respectively. Thus, Eq. (3.43) contains the solution of Lai and Chow [107] as a special case. No higher order solution has been constructed by this method.
Figure 3.3: (a-e) (2,2) dromion solution (3.49) interaction at time intervals (a) $t = -8$, (b) $t = -4$ (c) $t = 0$ (d) $t = 4$ and (e) $t = 8$
Figure 3.4: (a) Elliptic function solution (3.54) and an instanton solution (3.55) at time intervals (b) $t = -3$, (c) $t = -1$ and (d) $t = 1$ (e) $t = 3$ and (f) $t = 4$.
Figure 3.5: (a) Elliptic function solution (3.57) and two instanton solution (3.58) at time intervals (b) $t = -3$, (c) $t = -1$, (d) $t = 1$, (e) $t = 3$ and (f) $t = 4$
Figure 3.6: Bounded two soliton solution