CONTENTS

CHAPTER - I INTRODUCTION

1.1 INTRODUCTION 1
1.2 HYDROGEN STORAGE 3
1.3 HYDROGEN STORAGE TECHNIQUES 5
 1.3.1 Gaseous Form
 1.3.2 Liquid Form
 1.3.3 Compressed Form
 1.3.4 Chemical Bonding
 1.3.5 Chemical Carbon Bonding
 1.3.6 Metal – Hydrogen System
1.4 APPLICATION OF HYDROGEN-METAL/ALLOY SYSTEMS 9
1.5 EFFECT OF PRESSURE 12
REFERENCES 14

CHAPTER – II HYDROGEN DIFFUSION – A REVIEW

2.1 INTRODUCTION 16
 2.1.1 Palladium – Hydrogen System
 2.1.2 Infrared Spectroscopy Concept on Diffusion
2.2 THEORETICAL CONSIDERATION ON THE DIFFUSION MECHANISM 24
2.3 EXPERIMENTAL METHODS 32
 2.3.1 Permeation Method
 2.3.2 Gorsky effect
 2.3.3 Nuclear Magnetic Resonance
2.3.4 Quasi – Elastic Neutron scattering studies of Metal Hydrides
2.3.5 Mossbauer Studies
2.3.6 Subscale Microhardness Profiling
2.4 OTHER EXPERIMENTAL TECHNIQUES

REFERENCES

CHAPTER – III THEORETICAL MODEL

3.1 INTRODUCTION

3.2 BASIC THEORY OF LATTICE DYNAMICS

3.2.1 Calculation of Dispersion relation
3.2.2 Calculation of Wave Vectors

3.3 GREEN’S FUNCTION FORMALISM

3.3.1 Introduction
3.3.2 Green’s Function Formalism

3.4 DISPLACEMENT OF DEFECT SPACE ATOMS

3.5 DIFFUSION PARAMETERS

REFERENCES

CHAPTER – IV HYDROGEN IN PALLADIUM SYSTEM

4.1 INTRODUCTION

4.2 METHOD OF CALCULATION

4.2.1 Phonon Frequency Spectrum
4.2.2 Mean Square Displacement of Defect Space Atoms

4.3 RESULTS AND DISCUSSION

4.3.1 Frequency Distribution Curve
4.3.2 Mean Square Displacement