BIBLIOGRAPHY
BIBLIOGRAPHY

Azoreduction of trypan blue to known carcinogen by a cell free extract of a human intestinal anaerobe.

Decolorization and detoxification of textile dyes with a laccase from *Trametes hirsuta*.

Ahn, D., Chang, W., Yoon, T. (1999)
Dyestuff wastewater treatment using biochemical oxidation, physical adsorption and fixed bed biofilm process.

Effluent microbial degradation of toluidine Blue dyes by *Brevibacillus sp*.
Dyes and Pigments, 75, 395 – 400.

Aquatic toxicity from pulp and paper mill effluents.

Ames, B.N. (1971)

Carcinogens and mutagens, a simple test system combining liver homogenates for activation and bacteria for detection.

Decolorization of industrial effluents – available methods and emerging technologies.

Standard Methods for Examination of Water and Wastewater, 20th ed, Washington (DC), USA.
Textiles – accent on value addition, Survey of Indian industry.
The Hindu, 239 – 242.

Decolourization of textile azo dyes by newly isolated halophilic and
halotolerant bacteria.
Biores. Technol., 98 (11), 2082 – 2088.

Phylogenetic heterogeneity of the genus Bacillus revealed by comparative
analysis of small subunit ribosomal RNA sequences.

Baiocchi, C, Brussino, M.C., Pramauro, E., Preuol, A.B., Palmisano, L., Marci,
Characterization of methyl orange and its photocatalytic degradation
products by HPLC/UV-vis diode array and atmospheric pressure
ionization quadrupole ion trap mass spectrometry.
Mass Spectrometry, 214, 247-256.

Microbial degradation of textile dye containing effluents.

Yeasts: Characteristics and identification. 2nd ed, Cambridge University
Press.

Transformation of dyes and related compounds in anoxic sediment kinetics
and products.

Assessment of adult skeletons to detect prenatal exposure to Trypan Blue
in mice.

Decolorization of diazo dyes Direct Red 84 by a novel bacterial
consortium.

Horse radish peroxidase catalyzed degradation of industrially important
dyes.
Microplate: Instruction for use, Hayward, California; Biolog Inc.

Bitton, G. (2005)
Wastewater Microbiology, Wiley liss, 2nd ed, New York.

Breathpoints at the microbial level.
ASM News, 55, 536 – 539.

Lignin oxidation by laccase isoenzymes from Trametes versicolor and role of the mediator 2, 21 azirobis (3 ethylbenzthiazoline-6-sulfonale) in kraft lignin depolymerization.

Brodelius, P. and Vandamme, E.J. (1987)

Mutagenicity testing of certified food colours and related azo, xanthene and triphenyl methane dyes with the Salmonella Microsome System.

Long term toxicity of indigo carmine in mice.

Mutagenic activity of 27 dyes and related chemicals in the Salmonella microsome and mouse lymphoma TK+/- assays.

Indigo degradation with purified laccase from Trametes hirsuta and Sclerotium rolfsii.
J. Biotechnol., 89, 131 – 139.

Microbial decolorization of reactive azo dye under anaerobic conditions.

Kinetics of decoloration and biotransformation of direct black 38 by C. Hominis and P. Stutzeri.
Decolorization of azo dyes with immobilized Pseudomonas luteola.

Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain no.3.

Microbial decolorization of azo dyes by Proteus mirabilis.

Decolorization of textile dyes by newly isolated bacterial strains.

Decolorization of azo dye using PVA-immobilized microorganisms.

Microbial community structure in a thermophilic anaerobic hybrid reactor & degrading terephthalate.
Microbiology, 150, 3429 – 3440.

Immobilized cell fixed – bed bioreactor for waste water decolorization process.
Biochemistry, 40, 3434 – 3440.

Chen, J.P. and Lin, Y.S. (2007a)
Decolorization of azo dye by immobilized Pseudomonas luteola entrapped in alginate–silicate sol-gel beads.
Process Biochem., 42(6), 934 – 942.

Biodegradation of crystal violet by Pseudomonas putida.

Use of immobilized cells.

Christie, R. (2001)
Colour chemistry, The Royal Society of chemistry, Cambridge, United Kingdom, pp: 45.
Biodegradation dimethyl phthalate with high removal rates in a packed bed reactor.

Mutagenicity testing of some commonly used dyes.

Mutagenicity of azo dyes : structure activity relationship.

Chung, K.T. and Stevens, S.E. (1993)
Degradation of azo dyes by environmental microorganism and helminths.

Cohen, Y. (2001)
Biofiltration - the treatment of fluids by microorganism immobilized into the filter bedding material.
Biores. Technol., 77, 257 – 274.

Mechanism of enzymatic degradation of the azo dye Orange II determined by ex situ 1H nuclear magnetic resonance and electrospray ionization-ion trap mass spectrometry.
Anal. Biochem., 335(1), 135-149.

Cooper, P. (1995)
Removing colour from dye house wastewater.

Photocatalytic degradation of dyes in aqueous solution operating in a fluidized bed reactor.
Chemosphere, 46, 83 – 86.

Influence of redox mediators and metal ions on synthetic acid dye decolorization by crude laccase from *Trametes hirsuta*.
Chemosphere, 58, 417–422.

Industrial and biotechnology applications of laccases.

Erickson, J.C., and Widmer, B.A., (1986)
The vasopressor effect of indigo carmine.
Anesthesiology, 29, 188 – 189.

Biodegradation mechanisms and kinetics of azo dye 4Bs by a microbial consortium.
Chemosphere, 57, 293 – 301.

High diversity biofilm for the oxidation of sulfide containing effluents.

Riboflavin as a redox mediator accelerating the reduction of the azo dye Mordant Yellow 10 by anaerobic granular sludge.

Dye injection method for placement of an infusion catheter in regional hepatic chemotherapy.
Journal of Vascular and Interventional Radiology, 6(1), 119 – 123.

Fu, Y.Z. and Viraraghavan, T. (2001)
Fungal degradation of dyes wastewater.

Ozonization – an important technique to comply with new German law for textile wastewater treatment..

Photochemical and photo catalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74).

Fate of azo dyes in sludges.

Short term toxicity study of indigo carmine in the pig.
Kinetics and mechanism of the heterogenous catalyzed oxidative
degradation of indigo carmine.
Journal of Molecular Catalysis A: Chemical, 193(1), 109 – 120.

Glick, R.B. and Pasternak, J.J. (2001)
Molecular Biotechnology, Principles and Applications of Recombinant

Gopalakrishnan, R. (2006)

Gordon, R.E., Haynes, W.C. and Pang, C.H (1973)
Department of Agriculture.

Enrichment and identification of bacteria capable of reducing chemical
oxygen demand of anaerobically treated molasses spent wash.

Decolourization of azo dye methyl red by Saccharomyces cerevisiae
MTCC 463.
Chemosphere, 68(2), 394-400.

Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas
desmolyticum NCIM 2112.

Green, F.J., (1990) /
The sigma Aldrich handbook of stains, dyes and indication, Aldrich

Grefoory, P. (1986)
Azo dyes, Structure carcinogenicity relationships.
Dyes and Pigments, 7, 45 – 56.

Identification of Azosprillum strains by Restriction fragment length
polymorphism of 16s rDNA and the histidine operon.

A novel moderately halophilic bacterium for decolorizing azo dye under
high salt condition.
Biodegradation, In press.
Decolorization of textile industry waste water by photocatalytic
degradation process.
Dyes and Pigments, **49**(2), 117 – 125.

Decolorization of waste water.

Paenibacillus sp. Strain HCl xylanases responsible for degradation of rice
bran hemicelluloses.
Microbiological research, In press.

Immobilized biocatalysts, An introduction, Berlin, Germany : Springer –
Verlag.

Hatvani, N. and Mecs, I. (2001)
Peroxide by _lentinus edodes_ on malt containing by-product of the brewing
process.
Process Biochem., **37**(5), 491 – 496.

He, F., Mu, W. and Li, Y. (2004a)
Investigation of isolation and immobilization of a microbial consortium for
decoloring of azo dye 4Bs.
Water Res., **38**, 3596 – 3604.

He, F., Mu, W. and Li, Y. (2004b)
Biodegradation mechanisms and kinetics of azo dye 4Bs by a microbial
consortium.
Chemosphere, **57**(4), 293 – 304.

Guidelines and legislation for dye house effluents.

Hoffman de, E., Charette, J. and Stroobant, V. (2001)
Mass spectrometry, Principles and applications, Wiley and Sons, New
York, N.Y.

Degradation of P amino azo benzene by _Bacillus subtilis_.

Houk, V.S. (1992)
The genotoxicity of industrial wastes and effluents.
Comparative study on reaction selectivity of azo dye decolorization by Psuedomonas luteola.

Husain, Q. (2006)
Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water.
Critical Reviews in Biotechnology, 26, 201 – 221.

Assessment of the effect of azo dye RP2 B on the growth of nitrogen fixing cyanobacterium Anabaena sp.
Biores. Technol., 77, 93 – 95.

Immobilization of bacteria and Saccharomyces cerevisiae in poly tetrafluorobethylene membrane.

IARC (1982).
Monographs on the evaluation of carcinogenic risks of chemicals to humans, chemicals, industrial process and industries associated with cancer in humans, lyon, suppl.4.

Idaka, E. and Ogewa, Y. (1978)
Degradation of azo compounds by Aeromonas hydraphila var 2413.

A new trial in endoscopic diagnosis for stomach cancer: intra arterial dye (IAD) method.
Gastrointestinal Endoscopy, 26, 1 – 4.

Intrac arterial dye method with vasomocers (PIAD method) applied for the endoscopic diagnosis of gastric cancer and the side effects of indigo carmine.
Endoscopy, 14 (4), 119 – 123.

Decolorization and partial degradation of monoazo dyes in sequential fixed-film anaerobic batch reactor (SFABR).
Biores. Technol., 98(10), 2053-2056.

The role of intra operative cystoscopy in prolapse and incontinence surgery.
The Hindu, pp: 83 – 86.

Severe hypertensive reaction to indigo carmine.
Virology, 9, 180 – 181.

Biochemical Engineering Journal, 34, 44 – 50.

Jenkins, C.L. (1978)
Textiles dyes are potential hazards.

Rapid identification of bacteria on the basis of polymerase chain reaction - amplified ribosomal DNA spacer polymerase.

Indigo reduction in the wood vat a medieval biotechnology revealed.
Biologist, 53, 31 – 35.

Essentials of Environmental Studies. Pearson Education. Singapore Pvt. Ltd.

Study of dye decolorization in an immobilized laccase enzyme reactor using online spectroscopy.

Laccase-catalyzed decolorized of the synthetic azo dye Diamond Black PV 200 and of some structurally related derivatives.

Bioremediation of color of methyl violet and phenol from a dye industry waste effluent using Pseudomonas sp. isolated from factory soil.
Effects of shear stress and mass transfer on chitinase production by
Paenibacillus sp. CHE - N1.

Decolorization of textile dyestuff by a mixed microbial consortium.

Removal of reactive dyes by sorption / complexion with cucurbituril.

Screening of commercial sorbents for the removal of reactive dyes.
Dyes and Pigments, 51, 111 – 125.

Bioremediation concepts for treatment of dye containing waste water a
review.

Kennedy, W. F., Wirjoatmadja, K., Akamatsu, T. J. and Bonica, J. J. (1968)
Cardiovascular and respiratory effects of indigo carmine.
J. Urol., 100, 775 – 778.

Superoxidase converts indigo carmine to istain sulfonic acid: implication
for the hypothesis that neutrophils produce ozone.

Impact of dying industries on vegetation of luni catchment area, a case
study through remote sensing technique.
J. Environ. Pollution, 3(2), 77 – 78.

Decolorization of acid black 52 by fungal immobilization.

Kirk, O. (1994)
Encyclopedia Chemical Technology, Interscience, 8th ed, pp: 542 and 672.

Production of superoxide radical in reductive metabolism of a synthetic
food coloring agent. Indigo carmine and related compounds.
Life Sciences, 77, 601 – 614.
The microbiological decolorization of an industrial effluent containing a diazo linked Chromophere.

Decolorization of dyes by wood rotting basidiomycete fungi.

Paenibacillus campinas BLII. A wood material utilizing bacterial strain isolated from black liquor.

Ozonization of hydrolyzed azo dye reactive yellow 84(CI)
Chemosphere, 46(1), 109 – 113.

Pharmaceuticals, hormones and other organic waste water contaminants in US streams. A national; reconnaissance.

Mutagenic activity in drinking water in the Netherlands: A survey through remote sensing technique.
J. Environ. Pollution, 3(2), 77 – 78.

Superselective intra arterial infusion of cisplatin for squamous cell carcinoma of the mouth, Preliminary clinical experience.

Comparative Mutagenicity studies of azo dyes and their reduction products in Salmonella typhimureum.

Decolorization, biodegradation and detoxification of benzidine based azo dye.

Identification of Bacillus strains using the API system.
Enzymatic membrane reaction for biodegradation of recalcitrant
compounds. Application dye decolorization.

Lowry, O.H., Rosebrough, N.H., Fair, A.L. and Randal, R.I. (1951)
Protein measurement with the folin phenol reagent.

Decolorization of diazo dye reactive blue 172 by Pseudomonas aeruginosa
NBAR12.

Synthetic dye decolorization by white rot fungus, Ganoderma sp. WR-1.
Biore. Technol, 98(4), 775-780.

Biodecolorization of members of triphenylmethane and azo groups of dyes.

Bioremediation of crystal violet using air bubble bioreactor packed with
Pseudomonas aeruginosa.

How and why combine chemical and biological processes for waste water
treatment.

Degradation of indigo and indigo carmine with an enzyme isolated from
bacteria strain ATCC 55396, United States Patent 5457043 P.

Color removal from textile plant effluents.
Am. Dyestuff Reporter, 84, 15 – 21.

pp: 573.

Revised methods for Salmonella mutagenicity test.
Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures.
Chemosphere, 38, 2455 – 2460.

Biodegradation of bioaccessible textile azo dye by Phanerochaete chrysosporium.
J. Biotechnol., 89, 91 – 98.

Mathur, N., Bhatnagar, P. and Bakre, P. (2005a)
Assessing mutagenicity of textile dyes from pali (Rajasthan) using Ames Bioassay.

Mutagenicity assessment of effluents from textile / dye industries of Sanganer, Jaipur, (India): a case study.
Ecotoxicology and Environmental Safety, 61(1), 105 – 113.

Mutagenicity evaluation of industrial sludge from common effluent treatment plant.
Chemosphere, 67(6), 1229 – 1235.

Water minimization and reuse in textile industry, pp: 677, water recycling and resource recovery in industry: Analysis, technologies and implementation, IWA publishing, Cornwell, UK.

McKay, G. (1979)
Waste color removal from textile effluents.

Microbial decolorization and degradation of textile dyes.

Cell permeability as a rate limiting factor in the microbial reduction of sulfonated azo dyes.
Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing
bacterium from industrial waste water.

Degradation of xenobiotics and bioremediation, In: Environmental
Microbiology and Biotechnology (eds), Singh, D.P. and Trivedi, S.K.,
New Delhi, India, New Age International (p) limited Publishers.

Evaluation of conventional treatment process for removal of mutagenic
activity from municipal wastewater.
J. WPCF-57, 10, 999 – 1005.

Metcalf and Eddy (2003)
New York. USA.

Preliminary evaluation of Biolog, a carbon source utilization method for
bacterial identification.

Ministry of Environment and forest (2003)
Hazardous waste (Management and Handling) amendment rules,
New Delhi.

A critical review of the treatments for decolorization of textile effluent.
Colourage, 40, 35 – 38.

Anaerobic digestion of manure and mixture of manure with lipids : biogas
reactor performance and microbial community analysis.

Acid azo dye degradation by free and immobilized horseradish peroxidase
(HR) catalyzed process.
Chemosphere, 58, 1097 – 1105.

On the production of dextran by free and immobilized dextranulcerase.
Biotechnol. and Bioeng., 23(9), 2027 – 2037.

Decolorization of textile dye reactive violet 5 by a newly isolated bacterial
consortium RVM 11.1
Isolation, characterization and decolorization of textile dyes by a mixed
bacterial consortium.
Dyes and Pigments, 74, 723 – 729.

Morgan, D.L., Dunnick, J.K., Jokiner, M.P., Mattheos, H.B., Zeiger, E. and
Summary of the National Toxicology program benzidine dye initiative
Environ. Health Perspect, 102, 63 – 78.

Mutagenesis in Salmonella after metabolic activation of carcinogenic azo
dyes and their isomers by liver S9 from rats, mice and hamsters.

The Ames Salmonella / microsome mutagenicity assay.

Decolorization of azo dyes with Enterobacter agglomerans immobilized in
different support by using Fluidized bed reactor.
Current Microbiology, 48, 124 – 129.

Decolorization of reactive dyes by a thermostable laccase produced by
Ganoderma lucidum in solid state culture.

Microbial decolorization of reactive black 5 in a two stage anaerobic
aerobic reactor using acclimatized activated textile sludge.
Biodegradation, 17, 403 – 413.

Naitoh, J. and Fox, B.M. (1994)
Severe hypotension, bronchospasm and urticaria from intravenous indigo
carmine.

Alklibacterium iburiense sp. nov., an obligate alkaliophile that reduces an
indigo dye.

Reaction to indigo carmine.
J. Urol., 116, 132 – 133.
Bacterial indigo reduction.

The mechanism of bacterial indigo reduction.

Wastewater treatment with particulate biofilm reactors.
J. Biotechnol., 80, 1 – 33.

Selection of the substratum for composing biofilm system of textile
decolorizing bacteria.

Microbial process for the decolorization of textile effluent containing azo,
diazo and reactive dye.

Physical removal of textile dyes from effluents and solid state fermentation
of dye- adsorbed agricultural residues.

Asthma, Rhinitis and Dermatitis in workers exposed to reactive dyes.

Ogawa, A., Suzumatu, A., Takizawa, S., Kubota, H., Sawada, K., Hakamada,
Endoglucanases from Paenibacillus species from a new clan in glycoside
hydrolase family 5.

Anaerobic and aerobic treatment of simulated textile effluent.
Journal of Chemical Technology and Biotechnology, 74, 993 – 999.

Chemical and Mutagenic Evaluation of Sludge from a large wastewater.
Ecotoxicol. Environ. Safety, 26, 18 – 32.

Decolorization and metabolism of the reactive textile dye, Remazol Black
B, by an immobilized microbial consortium.
The detection of genotoxic and mutagenic activities of disperse azo dyes
for their hygienic standardization.

Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii.

Minerlization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus.

The removal of colour from textile waste water using whole bacterial cells.
Dyes and Pigments, 58, 179 – 196.

Electrochemically assisted photocatalytic degradation of reactive dyes.

Advanced liquid chromatography, mass spectrometry (LCMS) methods applied to waste water removal and the face of surfactants in the environment.

Porter, J.J. (1997)
Fitraton and recovery of dyes from textile waste water. Treatment of waste waters from textile procesing. Schriftenreihe biologische ahwsserreinigung, Berlin, Germany.

Aerobic decolorization and detoxification of a disperse dye in textile effluent by a new isolate of Bacillus sp.

Comparative adsorption studies of indigo carmine dye on chitin and chitosan.
Journal of Colloid and Interface Science, 277(1), 43 – 47.
Prival, M.J. (1983)

Bacterial mutagenicity testing of 49 food ingredients gives very few positive results.

Purohit, J.H., Kapley, A. and Prasad, S.,(2007)
Changes in microbial diversity in fed- batch reactor operation with waste water containing nitro aromatic residues.

Color removal from Industrial effluents – A Comparative review of available technologies.

Evaluation of biotoxicity of textile dyes using two bioassays.

Biodegradation of azo dyes in a sequential anaerobic – aerobic system.

Degradation of a tannery and textile dye, navistan fast blue S5R by Pseudomas aeruginosa.

Mechanism of Navistan fast blue S5R degradation by Pseudomonas aeroginosa.

Microbial bioremediation. MJP publishers, Chennai.

Decolorization of textile dyes by alginate-immobilized Trametes versicolor.
Chemosphere, 61, 956–964.
Diversity of Pseudomonas isolated from three different Rhizospheres.

Reich, M.S. (1996)
Asian textile dye markers are a growing power in changing marker.
Chemical Engineering News, 15, 10-12.

Mutagenicity of azo dyes following metabolism by different reductive /
oxidative systems.
Environ. Mutagen., 6, 705-717.

Environmental Chemistry of dyes and pigments. 1st edn, Wiley
Interscience, USA.

Decolorization of triphenylmethane, azo and anthraquinone dyes by a
newly isolated Aeromonas hydrophila strain.

Synthetic dye decolorization by white rot fungus, Ganoderma sp WR. 1.

Rhodes, M.J.C., Robin, R.J., Turner, R.J. and Smith, J.I. (1986)
Mucilaginous film production by plant cells immobilized in polyurethran
or nylon matrices.
Canadia J. Bot., 27, 140-151.

Remediation of dyes in textile effluent a critical review on current
treatment technologies with a proposed alternative.

Anaerobic treatment of vegetable tannery waste water by UASB process.

Enhancement of the plasma chemistry process in a three-phase discharge
reactor.

Comparative studies on potential of consortium and constituent pure
bacterial isolates to decolorize azo dyes.
Purification and characterization of an extracellular laccase of a fungus
(family Chaetomiaceae) isolated from soil.

Laboratory Press, New York.

Sanchez, P.S., Sato, M.I.Z., Paschoal, C.M.R.B., Alues, M.N., Furlan, E.V. and
Toxicity assessment of industrial effluents from S. Paulo state, Brazil,
using short term micro assays.
Toxicity Assessment, 3, 55 – 80.

Volumetric studies of indigo absorbed on pretreated carbon paste
electrode.

Decolorization and complete degradation of methyl red by a mixed
culture.
The Environmentalist, 23, 145 – 149.

Decolorization of triphenylmethane dyes and textile and dye stuff effluent
by Kurhtia sp.

Molecular biology techniques used in waste water treatment; An overview.
Process Biochem., 42, 119 – 133.

Biodegradation of methyl violet by Pseudomonas mendocina MCM
B-402.

Gearing for new regime, The Survey of Indian industry, The Hindu,

Bioremediation of textile azo dye by aerobic bacterial consortium.

Rec effect of certain textile dyes in Bacillus subtilis.
Biodegradation of acid blue-15, a textile dye, by an upflow immobilized
cell bioreactor.

Biological treatment of textile dye acid violet-17 by bacterial consortium
in an upflow immobilized cell bioreactor.

Fate of water-soluble azo dyes in activated sludge process.
Chemosphere, 22, 107 – 119.

Shelby, M.D. and Zeiger, E. (1990)
Activity of human in the Salmonella and rodent bone marrow cytogenetics
test.

Azo dyes on textiles US German bar, an objective assessment.

Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus
gen. nov. Int

Shir, Y. and Raja, S.N. (1993)
Indigo carmine induced severe hypotension in patients undergoing radical
prostatectomy.
Anesthesiology, 79, 378 – 381.

Enzymatic decolorization of sulfophthalein dyes.

Shu, H.V. and Chang, M.C. (2005)
Decolorization and mineralization of a phthalocyanine dye CI. Direct blue
199 using UV / H2O2 process.

Spectrometric identification of organic compounds, John Wiley and Sons.
Inc, USA.

Smith, N.R., Gordon, R.E. and Clark, F.E. (1952)
Aerobic mesophilic spore forming bacteria. Miscellaneous publications no
Effects of sewage effluent discharge on the abundance, condition and mortality of hulafish Trachinops taeniatus (plesiopidae).

Spadarry, J.T., Isebelle, L. and Renganathan, V. (1994)
Hydroxyl radical mediated degradation of azo dyes : evidence for benzene generation.

Spadro, J.T., Gold, M.H. and Renganathan, V. (1994)
Degradation of azo dyes by the lignin degrading fungus Phaenerochaee chrysosporium.

Decolorization and inhibition kinetics of direct black 38 azo dye with granulated anaerobic sludge.

Halobacillus gen nov, with description of Halobacillus litoralis sp nov and Halobacillus trupeni sp. nov and transfer of Sporosanciha halophila to Halobacillus halophilus comb. nov.

Pollution Research, 13, 369 – 373.

Automated systems for identification of microorganisms.
Clinical Microbiology Reviews, 5, 302 – 327.

Azo dye biodegradation by microbial culture immobilized in alginate beads.
Environ. Int., 31, 201 – 205.

Pathological basis of mucosal changes in the esophagus. What the endoscopist can (and must).
Atta Endosc., 31(2), 125 – 130.
Mutanase from a Paenibacillus isolate: Nucleotide sequence of the gene
and properties of recombinant enzymes.

Sundaram, R. (2007)
Farmers plan stir against pollution in Kalingarayan canal.
The Hindu, April 25.

The evaluation of white rot fungi in the decoloration of textile dyes.

Enumeration and factors influencing the reactive abundance of a dentrifier
Pseudomonas sp JR12. Entrained in alginate beads.

Bioremediation of textile azo dye by Trichophyton rubrum LSK-27.

Degradation of azo dyes by laccase and ultrasound treatment.

A text book of organic chemistry, Vilkas publishing House Pvt Ltd, New
Delhi, pp: (1257-1258)

Thurston, C.F. (1994)
The structure and function of fungal laccase.
Microbiology, 140, 19 – 26.

Assessment of teratogenicity and embryo toxicity of sludge from CETP,
pali in Swiss Albino mice, PhD thesis, University of Rajasthan, Jaipur.

The salmonella mutagenicity assay in a surface water quality monitoring
program based on 20-year survey.

Decolorization of reactive black 5 by Funalia trogii immobilized on Luffa
cylindrica sponge.
Chemical oxidation technologies ultraviolet light/ hydrogen peroxide.
Fenton's reagent and titanium dioxide assisted photocatalysis.

Mutagenicity of anthraquinone and azo dyes in Ames Salmonella
typhimurium test.

Comparitive study on transformation of azo dyes by different while rot
fungi.
Indian Journal of Biotechnology, 1, 393 – 396.

Decolorization of synthetic dyes by a newly isolated strain of Serratia
marcescens.

Biochemistry, 3rd ed, JohnWiley and Sons, Inc, USA.

Enhancing bioremoval of textile dyes by eight fungal strains from media
supplemented with gelatin waste and sucrose.

Simplified predictive model for biologically activated carbon fixed beds.
Process Biochem., 32, 327 - 335.

Toxicity assessments of pretreated industrial effluents using plants.

Frequency of formation of chimeric molecules as consequences of PCR
amplification of 16S rRNA genes from mixed bacterial genomes.

Comments on the history and importance of aromatic and heterocyclic
amines in public health

Catalytic-kinetic absorptiostat technique with the indigo carmine -
hydrogen peroxide reaction as the indicator reaction.
Textile wastewaters effluent toxicity identification evaluation.

White rot fungi and their enzymes for the treatment of industrial dye effluents.

Decolorization and biodegradation of Methyl red by *Klebsiella pneumoniae* RS-13.

Decolorization and biodegradation of N, N, dimethyl para phenylenediamine by *Klebsiella pneumoniae* RS-13 and *Acetobacter liquefaciens* S-1.

Wong, Y. and Yu, J. (1999)
Laccase catalyzed decolorization of synthetic dyes.

Investigation on rate determining factors in the microbial reduction of azo dyes.

Decolorization of anthraquinone dye by *Shewanella decolorations* S12.

Treatment of textile plant effluent by nano filtration membrane.

Nitrate removal using a mixed culture entrapped microbial cells immobilization process under high salt conditions.

Decolorization of dyes using UV / H_2O_2 photo chemical oxidation.
Paenibacillus campinasensis Sp nov, a cyclodextrin producing bacterium isolated in Brazil.

Bladder cancer in workers of the dyeing industry.
Igaku No Ayumi, 79, 421 – 422.

Degradation of reactive dyes: A comparative study of ozonation enzymatic and photochemical process.
Chemosphere, 38, 835 – 852.

Zhang, Q. and Chung, T.K. (2001)
Adsorption of organic pollutants of kraft pulpmill on activated carbon and polymer resin.

Microbial characteristics of a methogenic phenol degrading sludge.

Aerobic degradation of bisphenol A by Achromobacker xylosoxidans strain B – 16 isolated from compost leachate of municipal solid waste.
Chemosphere, 68(1), 181-190.

Zhao, X. and Hardin, J. R. (2007)
HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus.
Dyes and Pigments, 73, 322 – 325.

Decolorization of industrial effluents containing relative dyes by actinomycetes.

Anoxic treatment of low strength wastewaters by immobilized sludge.
Properties of purified orange II azoreductase, the enzyme initiating azo dyes degradation by Pseudomonas KF46.

Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes.