Bibliography

<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
</tr>
</thead>
</table>

28. **Barman (2002),** Quality of water in Rural Assam a case study with respect to Nalbari district ; Ph.D. Thesis ,G.U.

34. **Brown PM, McClelland NL, Deninger RA and Tozer RG (1970),** A water quality index -do we dare? Water and sewage works, 117(10), 339-343.

40. Chetia (1999), Monitoring Environmental Status of Selected Tanks in Guwahati City; M.Phill. Diss, G.U.

42. Chen, Z.S. (1991), Relationship between heavy metal concentrations in soils of Taiwan and uptake by crops.

46. Cheung, K. C., Poon, B. H. T; Lan C.Y; and Wong, M.H; (2003), Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China, Chemosphere; 52: 1431-1440.

65. **Dora Maria Carmona Garces, Ángel Faz Cano, Joselito, M. Arocena**, Dissolved organic carbon and metals release in amended mine soils, macla. n° 10. noviembre'08, revista de la sociedad española de mineralogía.

66. **Dr.M.M.Saxena,(2000). Environmental Analysis, Water, Soil and Air.**

74. **Ezzati, M., Kammen, D.M.,** (2002), The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environmental Health Perspectives 110, 1057-1068.

80. **Field Manual for Water Quality Monitoring. WWE-India.**

82. **Fresner J, Schnitzer H, Gwehenberger G, Planasch M, Brunner C, Taferner K** (2007), Practical experiences with the implementation of the concept of zero emissions in the surface treatment industry in Austria, J. Cleaner Prod 15:1228–1239.

102. **Hatch, D., Goulding, k. And Murphy, D., (2002)**, Nitrogen. Chapter 1 in Agriculture, hydrology and water quality, edited by Haygarth, P. and Jarvis, S.

120. **Ji, Junfeng , Song, Yinxian, Yuan, Xuyin and Yang, Zhongfang (2010)**, Diffuse reflectance spectroscopy study of heavy metals in agricultural soils of the Changjiang River Delta, China, 19th World Congress of Soil Science, Soil Solutions for a Changing World 1 – 6 August 2010, Brisbane, Australia.

188

136. Krishnan M.S. (1968), Geology of India and Burma.

155. **Manalis, N., Grivas G., Protonotarios V.**, (2005), Toxic metal content of particulate matter (PM10), within the Greater Area of Athens, Chemosphere, 60, 557-566.

191. Natural Resource Management Ministerial Council 2005,

203. Ongley E.D.(1997), MATCHING WATER QUALITY PROGRAMS TO MANAGEMENT NEEDS IN DEVELOPING COUNTRIES: THE CHALLENGE OF PROGRAM MODERNIZATION,

207. Patowary (2000), A Study on some drinking water quality parameters of springs and wells of Greater Guwahati; M.Phill Diss, G.U.

 Statistical Analysis of Ground Water Data of an Iron Ore Mining Area. Indian

 New Delhi.

238. **Rao, J. K. and Shantaram, M V(1995).** Ground water pollution from open
 refuse dumps at Hyderabad. Indian Journal of Environmental Health, 37(3) : 197-
 204.

 city using air quality indexing method. Journal of Ecotoxicology and

240. **Ross, S.M., (1994),** Retention, transformation and mobility of toxic trace metals in
 Soil plant systems; Ross, S.M. (ed.); John Wiley and Sons: Chichester, U.K., 63–
 152.

241. **Rainey, M.P., Tyler, A.N., Gilvear, D.J., Bryant, R; G; McDonald, P, (2003),**
 Mapping intertidal estuarine sediment grain size distributions through airborne

242. **Rubenowitz, E; Axelsson, G; Rylander, R., (1999),** Magnesium and calcium in
 drinking water and death from acute myocardial infarction in women,

243. **Rupankar Chowdhury (2007),** Study of suspended particulate matters (SPM) in
 some parts of Guwahati City.

244. **Saar, R.A. and Weber, J.H., (1982),** Fulvic acid: Modifier of metal-ion
 chemistry, Environmental Science and Technology, 16: 510–517.

248. **Samara, C., Voutsa, D.,** (2005), Size distributions of airborne particulate matter and associated heavy metals in the roadside environment, Chemosphere, 59, 1197-1206.

250. **Saravanakumar, K. and Kumar, R. Ranjith,** (2011), Analysis of water quality parameters of groundwater near Ambattur industrial area, Tamil Nadu, India, Indian Journal of Science and Technology, Vol. 4 No. 5.

260. Sharma, N. and Sharma, H.P., (2006), Fluorides and nitrate content in ground water samples in different locations of Kamrup (Both Metro and Rural) district, Asom, India, Enviro-spectra, Vol 1, No.1 2006, P.73-81.

265. Siddiqui, Wequar Ahmad and Sharma, Rajib Ranjan, (2009), Assessment of the impact of industrial effluents on groundwater quality in Okhla industrial area, New Delhi, India,E-Journal of Chemistry, 6(S1), S41- S46.

206

306. Yang CY; Chiu HF; Cheng MF; Tsai SS; Hung CF; Tseng YT (1999), Magnesium in drinking water and the risk of death from diabetes mellitus, Magnes Res, 12(9), 894-899.

