CHAPTER 1: Introduction

CHAPTER 2: Review of literature
2.1 Pathogen recognition and response in plants
2.1.2. Innate / PAMPs Triggered Immunity
2.1.3. Induced/ Effector triggered immunity
2.1.4. Recent insights on Innate and Induced defense responses in plants
2.1.5. Modulation of plant defense responses by Pathogen Effectors
2.2. Signaling pathways in Plant Defense
2.2.1. Role of Oxidative Burst and Active Oxygen Species in defense signaling
2.2.2. Role of Salicylic Acid in defense signaling
2.2.3. Role of Jasmonic Acid in defense signaling
2.2.4. Role of Ethylene in defense signaling
2.2.5. Role of Abscisic Acid in defense signaling
2.2.6. Role of Nitric oxide in defense signaling
2.3. Networking of hormone signaling pathways in plant defense
2.3.1. SA-JA cross talk
2.3.2. JA-ET crosstalk
2.3.3. SA-ET crosstalk
2.3.4. Other signaling molecules networking with SA-JA-ET pathway
2.4. Role of Mitogen-Activated Protein Kinase Cascades in plant signaling
2.4.1. Role of MAP kinases in plant defense signaling

Chapter 3: Materials and Methods
3.1 Materials
3.1.1. Plant materials
3.1.2. Fungal material
3.1.3. Bacterial strains used
3.1.4. Plasmid vectors used
3.1.5. Chemicals and Materials used
3.1.6. Oligonucleotides used in the present study
3.2. Methods
3.2.1. General Sterilization procedures used
3.2.2. Nutrient Media
3.2.3. Plant growth conditions, maintenance and fungal/chemical treatments and mechanical wounding procedures
3.2.3.1. Plant growth conditions
3.2.3.2. Fungal growth conditions
3.2.3.3. Preparation of Fungal inoculums and subsequent infection
3.2.3.4. Mechanical wounding and treatment with signaling molecules.
3.2.4. Recombinant DNA techniques for cloning and DNA analysis
3.2.4.1. Polymerase Chain reaction (PCR)
3.2.4.2. Construction of SMART™ cDNA library for 5’ and 3’ RACE
3.2.4.3. 5’ RACE of truncated MAPK clone
3.2.4.4. 3’ RACE of truncated MAPK clone
3.2.4.5. Reverse Transcription PCR (RT-PCR)
3.2.4.6. Cloning of PCR Products
3.2.4.7. Separation of DNA on Agarose gels
3.2.4.8. Elution of DNA from agarose gels
3.2.4.9. Purification of PCR products
3.2.4.10. Restriction digestion of DNA molecules
3.2.4.11. Ligation of DNA fragments
3.2.4.12. Preparation of Competent Bacterial Cells
3.2.4.13. Transformation of Competent Cells
3.2.4.14. Verification of presence of insert in transformed cells.
3.2.4.15. Alkaline lysis midiprep of plasmid DNA
3.2.4.16. Purification of plasmid by PEG precipitation for Sequencing
3.3. Gene expression analysis using Northern Hybridization
3.3.1. Isolation of RNA from Chickpea
3.3.2. RNA quantification
3.3.3. Denaturing Formaldehyde gel for RNA electrophoresis
3.3.4. Transfer of total RNA on Nylon Membrane
3.3.5. Radioactive probe preparation, purification and hybridization
3.3.6. Washing and Autoradiography
3.4. Cloning and expression of activity assays of CaMPK1 protein
3.4.1. Cloning of CaMPK1 in pMAL vector
3.4.2. Expression and Purification of CaMPK1 in the pMAL vector system.
3.4.3. SDS PAGE
3.4.4. In gel kinase assay
3.4.5. In solution kinase assay.

Chapter 4: Isolation of full-length sequence and in silico analysis of Chickpea MAP Kinase, CaMPK1 61-75
4.1. Introduction
4.1.1. Evolutionary history of legumes
4.1.2. Signaling in legumes
4.1.3. Convergence of signaling cascades at MAPKs
4.2. Results
4.2.1. Full-length sequence isolation of clone # 37 from by 3' and 5' RACE.
4.2.2. Sequence analysis of the full length clone CaMPK1
4.3. Discussion
4.3.1. Sequence characteristics of CaMPK1
4.3.2. Relationship of CaMPK1 with other legume MAPKs

Chapter 5: Characterization of CaMPK1 during Chickpea-Ascochyta interaction and in response to defense signal regulators 76-89
5.1. Introduction
5.1.1. Strategies adopted by fungi for plant infection
5.1.2. Role of signaling pathways in modulating plant defense responses
5.1.3. Ascochyta blight in chickpea.
5.1.4. Genetic basis of resistance to Ascochyta blight in chickpea
5.1.5. Role of phytohormones in Chickpea-Ascochyta interaction
5.2. Results
5.2.1. Expression patterns of CaMPK1 in response to Ascochyta infection.
5.2.2. Expression patterns of CaMPK1 in response to defense/stress signaling molecules and wounding
5.2.3. Expression and purification of CaMPK1
5.2.4. Kinase activity and substrate specificity of CaMPK1.
5.2.5. Modulation of CaMPK1 activity during Ascochyta infection
5.3. Discussion
5.3.1. Role of CaMPK1 in the early events of chickpea-Ascochyta interaction.
5.3.2. Role of defense signaling molecules in modulating CaMPK1 expression.
5.3.3. Activation of MAPK cascades and CaMPK1 activity modulation during Ascochyta blight

Chapter 6: Summary and Conclusions 90-95

Bibliography 96-121