Chapter 3

RELATIVE INJECTIVITY

3.1 PRELIMINARIES

3.2 E-INJECTIVITY AND INJECTIVITY

3.3 ON DIRECT SUM OF N-GROUPS WITH INJECTIVITY AND E-INJECTIVITY

3.4 E-INJECTIVE AND INJECTIVE N-GROUPS WITH CHAIN CONDITIONS
3. RELATIVE INJECTIVITY

In this chapter we discuss relative injectivity and injectivity of N-groups. This chapter has four sections.

3.1 PRELIMINARIES:

This section deals with some basic definitions and results which are used in the later sections.

Definition 3.1.1: Let E be an N-group. Then the singular subset of E is defined as the set

\[Z(E) = \{ x \in E / Ix = 0 \text{ for some essential } \text{N-subgroup } I \text{ of } N \}. \]

An N-group E is called singular N-group if \(Z(E) = E \).

An N-group E is called non-singular N-group if \(Z(E) = 0 \).

Definition 3.1.2: If E is an N-group, the set \(Z_W(E) = \{ x \in E / Ix = 0 \text{ for some essential ideal } I \text{ of } N \} \) is weak singular subset of E.

An N-group E is called weak singular if \(Z_w(E) = E \).

An N-group E is called weak non-singular if \(Z_w(E) = 0 \).

Example 3.1.3: \(N = \mathbb{Z}_8 \) is a near-ring with two operations ' + ' as addition modulo 8 and ' * ' defined by following table:
Here \(I = \{0, 4\} \) is an essential \(N \)-subgroup of \(N \). Here \(\forall x \in N, Ix = 0 \). So \(Z(N) = N \), so \(N \) is singular.

But \(I = \{0, 4\} \) is also an essential ideal of \(N \). Hence \(Z_w(N) = N \) and so \(N \) is also weak singular.

Example 2.1.13 is an example of non-singular as well as weak non-singular \(N \)-group.

Definition 3.1.4: An \(N \)-monomorphism \(f : A \to B \) is said to be an essential \(N \)-monomorphism if \(fA \leq B \).

Proposition 3.1.5: An \(N \)-group \(C \) is singular if there exists a short exact sequence

\[
0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0
\]

such that \(f \) is an essential \(N \)-monomorphism.
Proof: Let $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ be a short exact sequence such that f is an essential N-monomorphism. For any $b \in B$, we have a map $k : N \rightarrow B$ defined by $k(n) = nb$. By proposition 1.3.5, $k^{-1}(fA) \leq_{e} N$.

⇒ the N-subgroup $I = \{ n \in N \mid nb \in fA \}$ is an essential N-subgroup of N.

Now $Ib \leq fA = K_{erg}$.

Hence $g(Ib) = 0 \Rightarrow I(gb) = 0$ and so $gb \in Z(C)$.

Since g is an N-epimorphism, we get $Z(C) = C \Rightarrow C$ is singular.

Corollary 3.1.6: If A is an essential ideal of B, then B/A is singular.

Proof: We consider the short exact sequence $0 \rightarrow A \xrightarrow{i} B \xrightarrow{g} B/A \rightarrow 0$.

As $A \leq_{e} B$, from above proposition B/A is singular.

Proposition 3.1.7: If B is Non-singular and B/A is singular then $A \leq_{we} B$.

Proof: If B/A is singular and x is non-zero element of B, then $Ix = \bar{0}$ for some essential N-subgroup I of $N \Rightarrow Ix \leq A$. As B is non-singular, we have $Ix \neq 0$ and thus $Nx \cap A \neq 0$.

Therefore $A \leq_{we} B$.

Proposition 3.1.8: If N is a dgnr and $\{N_{e}\}_{e \in E}$ is an independent family of normal N-subgroups of N-group E then E is a homomorphic image of $\bigoplus_{e \in E} N_{e}$.

Proof: Let $f_{e} : N_{e} \rightarrow E$ be defined by $f_{e}(ne) = ne$.

Then f_{e} is N-homomorphism.
Let $f_{e_i} : \mathbb{N}e_i \to E$ be defined by $f_{e_i}(n, e_i) = n e_i$ and $f_{e_j} : \mathbb{N}e_j \to E$ be defined by $f_{e_j}(n, e_j) = n e_j$

Let $f_{e_i} + f_{e_j} : \mathbb{N}e_i \oplus \mathbb{N}e_j \to E$ be defined by $(f_{e_i} + f_{e_j})(n, e_i + n, e_j) = (f_{e_i}(n, e_i) + f_{e_j}(n, e_j))$.

Obviously it is well-defined.

Let $(n/e_i + n/e_j), (n/e_i + n/e_j) \in \mathbb{N}e_i \oplus \mathbb{N}e_j$ and $(f_{e_i} + f_{e_j})(\sum_{i=1}^{n} s_i (n/e_i + n/e_j))$

$= (f_{e_i} + f_{e_j})(s_1(n/e_i + n/e_j) + s_2(n/e_i + n/e_j) + \ldots + s_n(n/e_i + n/e_j))$ [since $\mathbb{N}e_i$'s are normal \mathbb{N}-subgroups]

$= (f_{e_i} + f_{e_j})(s_1(n/e_i + n/e_j) + \sum_{i=1}^{n} s_i n_i e_i)$

$= (f_{e_i} + f_{e_j})(\sum_{i=1}^{n} s_i n_i e_i) + (n/e_i + n/e_j)$

Next for $n \in \mathbb{N}$, $(f_{e_i} + f_{e_j})(n(n/e_i + n/e_j)) = (f_{e_i} + f_{e_j})(\sum_{i=1}^{n} s_i (n/e_i + n/e_j))$ [since \mathbb{N} \mathbb{N}-normal]

$= (f_{e_i} + f_{e_j})(s_1(n/e_i + n/e_j) + s_2(n/e_i + n/e_j) + \ldots + s_n(n/e_i + n/e_j))$

$= (f_{e_i} + f_{e_j})(s_1(n/e_i + s_2 n/e_i + \ldots + s_n n/e_i) e_i + (s_1 n_i/e_i + s_2 n_i/e_i + \ldots + s_n n_i)) e_j$

$= (f_{e_i} + f_{e_j})(\sum_{i=1}^{n} s_i n_i) e_i + (\sum_{i=1}^{n} s_i n_i) e_j$

$= (f_{e_i} + f_{e_j})(nn/e_i + nn/e_j)$

$= (nn/e_i + nn/e_j)$
Thus $(f_{e_1} + f_{e_j})$ is an N-homomorphism.

Similarly if we define \(f = \sum_{e \in E} f_e : \oplus_{e \in E} N e \to E \) by \((\sum_{e \in E} f_e) (\sum_{e \in E} n_e) = (\sum_{e \in E} f_e(n_e)) \), \(n \in N \), it is an N-homomorphism.

Obviously it is an N-monomorphism.

Again for any \(e_k \in E \) we get \(e_k \in N e_k \in \oplus_{e \in E} N e \). So \(f \) is onto.

Hence \(E \) is a homomorphic image of \(\oplus_{e \in E} N e \).

Theorem 3.1.9: For a short exact sequence \(0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0 \) if \(A \) and \(C \) are finitely generated then \(B \) is also finitely generated.

Proof: As \(\beta : B \to C \) is an epimorphism, \(C \cong \frac{B}{\text{Ker} \beta} \Rightarrow C \cong \frac{B}{\text{Ker} \beta} \).

For identity map \(\alpha \), \(C \cong \frac{B}{A} \).

So if an N-group \(B \) has finitely generated N-subgroup \(A \) and factor N-group \(\frac{B}{A} \), then \(B \) is also finitely generated.
Definition 3.1.10: For an N-group E an element x is called a nilpotent element if \(x^k = 0\) for some \(k \in \mathbb{N}^+\).

3.2 E-injectivity and injectivity:

In this section we define relative injective N-groups, and some special relative injective N-groups and investigate various characteristics of these N-groups.

In the third section of the chapter we study direct sums of relative injective N-groups and N-subgroups, direct product of relative injective N-groups. Using the notion of dominance of an element of an N-group by another N-group direct sums of relative injective N-groups are established.

In the last section we are trying to relate direct sums of relative injective N-groups and chain conditions, relative injectivity of simple, semi-simple, strictly semi-simple, singular N-groups and chain conditions.

Throughout the remaining section of this chapter we consider all N-groups unitary N-groups unless otherwise specified.

Definition 3.2.1: Let E and U be N-groups. U is called E-injective or U is injective relative to E if for each N-monomorphism \(f: K \rightarrow E\), every N-homomorphism from K into U can be extended to an N-homomorphism from E into U. i.e. The diagram

\[
\begin{array}{ccc}
K & f & E \\
g & & h \\
& U & \\
\end{array}
\]
commutes, i.e. \(g = hf \).

An N-group \(A \) is injective if it is \(E \)-injective for every N-group \(E \) of \(N \). So if an N-group \(A \) is injective it is \(E \)-injective for any N-group \(E \).

Proposition 3.2.2: Let \(N \) be a dgnr, \(E \) be an N-group and \(F \) be a commutative N-group.

Then the set \(\text{Hom}_N(E, F) = \{ f / f: E \to F \text{ is an N-homomorphism} \} \) is an abelian group where addition is defined as: for \(f, g \in \text{Hom}_N(E, F) \), \((f + g)(e) = f(e) + g(e) \).

Proof: As \(F \) is an abelian N-group, for \(f, g \in \text{Hom}_N(E, F) \) and \(e \in E \),

\[
(f + g)(e) = f(e) + g(e)
\]

\[
= g(e) + f(e)
\]

\[
= (g + f)(e), \text{ so } f + g = g + f.
\]

We are to show \(f + g \) is an N-homomorphism.

For \(e_1, e_2 \in E \), \((f + g)(e_1 + e_2) = f(e_1 + e_2) + g(e_1 + e_2) \) [By given condition]

\[
= f(e_1) + f(e_2) + g(e_1) + g(e_2) \quad [\because f, g \text{ are N-homomorphism}]
\]

\[
= f(e_1) + g(e_1) + f(e_2) + g(e_2) \quad [\because F \text{ is abelian}]
\]

\[
= (f + g)(e_1) + (f + g)(e_2) \quad [\text{By given condition}]
\]

Next for \(e \in E \), \(n \in N \)

\[
(f + g)(ne) = f(ne) + g(ne) \quad [\text{By given condition}]
\]

\[
= nf(e) + g(n(e)) \quad [\because f, g \text{ are N-homomorphisms}]
\]

\[
= (\sum_{i=1}^p s_i)f(e) + (\sum_{i=1}^p s_i)g(e) \quad [\because N \text{ is dgnr}]
\]
Thus \(f + g \) is an \(N \)-homomorphism.

Proposition 3.2.3: Let \(B, M \) be two \(N \)-groups and \(C \) an ideal of \(B \). For \(N \)-homomorphism \(f : B \rightarrow M \) \exists unique homomorphism \(\tilde{f} : \frac{B}{C} \rightarrow M \) such that \(\tilde{f}(\overline{b}) = f(b), \forall C \subseteq \text{Ker} f \).

Proof: Let \(\overline{b_1} = \overline{b_2} \)

\[
\Rightarrow \overline{b_1} - \overline{b_2} = 0
\]

\Rightarrow \overline{b_1} = \overline{b_2} + C = C

\Rightarrow \overline{b_1} - \overline{b_2} \in C \subseteq \text{Ker} f

\Rightarrow f(\overline{b_1} - \overline{b_2}) = 0

\Rightarrow f(\overline{b_1}) - f(\overline{b_2}) = 0

\Rightarrow \tilde{f}(\overline{b_1}) = \tilde{f}(\overline{b_2})

So \(\tilde{f} \) is well-defined.

Next \(\tilde{f}(\overline{b_1} + \overline{b_2}) \)

\[
= \tilde{f}(\overline{b_1} + \overline{b_2})
\]

\[
= f(\overline{b_1} + \overline{b_2})
\]
\[= f(b_1) + f(b_2) \]
\[= f(b_2) + f(b_2) \]

And \(\bar{f}(\tilde{n}b) \)
\[= \bar{f}(n(b + C)) \]
\[= \bar{f}(nb + C) \]
\[= \bar{f}(\tilde{n}b) \]
\[= f(nb) \]
\[= nf(b) \]
\[= nf(\tilde{b}) \]

So \(\bar{f} \) is an N-homomorphism and by definition obviously it is unique.

Thus we get if \(f \) is an epimorphism, then \(\bar{f} \) defined as above is also an epimorphism.

Definition 3.2.4: Let \(U \) be a commutative N-group and \(f: L \to M \) be an N-homomorphism. We can define a mapping

\[f^* = \text{Hom}_N(f, U) : \text{Hom}_N(M, U) \to \text{Hom}_N(L, U) \]

by \(\text{Hom}_N(f, U) : \gamma \to \gamma f \) i.e. \(f^* \gamma = \gamma f \) then \(\text{Hom}_N(f, U) \) is an N-homomorphism.

Proposition 3.2.5: If \(U \) is a commutative N-group, then for every exact sequence

\[0 \to K \xrightarrow{f} E \xrightarrow{g} L \to 0 \]

the sequence \[0 \to \text{Hom}_N(L, U) \xrightarrow{g^*} \text{Hom}_N(E, U) \xrightarrow{f^*} \text{Hom}_N(K, U) \] is exact.

Proof: If \(\gamma \in \text{Hom}_N(L, U) \) and \(g^*(\gamma) = 0 \)
\[\Rightarrow \gamma g = 0 \]
\[\Rightarrow \gamma = 0 \quad [\because g \text{ is N-epimorphism}] \]
\[\Rightarrow g^* \text{ is N-monomorphism.} \]

Next let \(\gamma \in \text{Hom}_N(L, U) \). Then \(f^* g^* (\gamma) = f^*(\gamma g) = (\gamma g)f = \gamma (gf) = \gamma 0 = 0^* = 0 = 0^* \gamma \)

So we get \(f^* g^* = 0 \Rightarrow \text{im } g^* \subseteq \text{Ker } f^* \).

Next let \(\beta \in \text{Ker } f^* \), then \(\beta f^* = f^* \beta = 0 \)

\[\Rightarrow \beta(\text{im } f) = 0 \Rightarrow \beta(\text{Ker } g) = 0 \]

\[\Rightarrow \text{Ker } g \subseteq \text{Ker } \beta. \]

Now \(\beta : E \to U \) is an N-homomorphism such that \(\text{Ker } g \subseteq \text{Ker } \beta \).

\[\Rightarrow \exists \text{ a unique N-homomorphism } \bar{\beta} : \frac{E}{\text{Ker } g} \to U \text{ such that } \bar{\beta}(\bar{b}) = \beta(b). \]

Also \(g : E \to L \) is an N-epimorphism, so \(\exists \) an N-isomorphism \(\phi : \frac{E}{\text{Ker } g} \to L \) such that

\[\phi(\bar{b}) = g(b). \]

We consider the following sequence of N-homomorphisms

\[L \xrightarrow{\phi^{-1}} \frac{E}{\text{Ker } g} \xrightarrow{\bar{\beta}} U, \text{ which gives } \bar{\beta} \phi^{-1} \in \text{Hom}_N(L, U). \]

Now \(g^* (\bar{\beta} \phi^{-1}) = (\bar{\beta} \phi^{-1})g = \beta \)

\[\Rightarrow \beta \in \text{im } g^*. \quad [\text{since } g^* (\bar{\beta} \phi^{-1})(b) = ((\bar{\beta} \phi^{-1})g)(b) = \bar{\beta}(\bar{b}) = \beta(b)]. \]

So \(\text{im } g^* = \text{Ker } f^*. \)
Proposition 3.2.6: A commutative N-group U is E-injective if and only if $\text{Hom}_N(-, U)$ is exact.

Proof: We assume U is E-injective.

We consider the exact sequence $0 \to A \xrightarrow{\alpha} E \xrightarrow{\beta} C \to 0$.

Now exactness of $0 \to A \xrightarrow{\alpha} E \xrightarrow{\beta} C \to 0$ implies

$$0 \to \text{Hom}_N(C, U) \xrightarrow{\beta^*} \text{Hom}_N(E, U) \xrightarrow{\alpha^*} \text{Hom}_N(A, U)$$

is exact.

So it is enough to show α^* is epic.

Let $f \in \text{Hom}_N(A, U)$. We consider the diagram

$$
\begin{array}{ccc}
0 & \to & A \\
& \alpha \downarrow & \downarrow \beta \\
& \gamma \downarrow & \\
& U & \to E
\end{array}
$$

Since U is injective, $\exists \gamma \in \text{Hom}_N(E, U)$ such that $\gamma \alpha = f$

$$\Rightarrow \quad \alpha^* \gamma = f$$

$$\Rightarrow \quad \alpha^* \text{ is onto.}$$

Conversely, let $\text{Hom}_N(-, U)$ be exact. We consider the diagram with exact row

$$
\begin{array}{ccc}
U & \to & \\
\uparrow f & & \\
0 & \to A \xrightarrow{\alpha} & E
\end{array}
$$
0 → A \overset{a}{\rightarrow} E \overset{\beta}{\rightarrow} \text{Im}_a \rightarrow 0 \text{ is exact.}

\Rightarrow 0 \rightarrow \text{Hom}_N(\text{Im}_a, U) \overset{\beta^*}{\rightarrow} \text{Hom}_N(E, U) \overset{\alpha^*}{\rightarrow} \text{Hom}_N(A, U) \rightarrow 0 \text{ is exact.}

Since α^* is an epimorphism, for $f \in \text{Hom}_N(A, U)$ such that $\alpha^*\gamma = f$

$\Rightarrow \gamma \alpha = f.$

Thus $\exists \gamma : E \rightarrow U$ such that $\gamma \alpha = f \Rightarrow U \text{ is } E\text{-injective.}$

Definitions 3.2.7: An N-group E is a WI-N-group if N-group W is E-injective.

Definition 3.2.8: An N-group E is a WC-I-N-group if a commutative N-group W is E-injective.

Definition 3.2.9: An N-group E is called a s-simple or a strict simple N-group if it has no proper normal N-subgroups.

Proposition 1.3.12 holds for normal N-subgroups also. Thus we get the following proposition:

Proposition 3.2.10: The following are equivalent

(a) Every normal N-subgroup of E is a direct summand.

(b) E is a sum of simple normal N-subgroups.

(c) E is a direct sum of simple normal N-subgroups.

Definitions 3.2.11: We define $s\text{-Soc } E$ or strict socle of E as direct sum of simple normal N-subgroups.

An N-group E is called a strictly semisimple N-group if $s\text{-Soc}(E) = E$. In other words E is strictly semisimple if one of the conditions of proposition 3.2.10 holds.
We observe that every semisimple N-group is strictly semisimple but the converse is not true. If N is a dgnr then every strictly semisimple N-group is semisimple.

The following is an example of strictly semisimple N-group which is not semisimple.

Example 3.2.12: We consider the near-ring \(N = \{ 0, a, b, x, y \} \) under the addition and multiplication defined as the following table

\[
\begin{array}{c|ccccccc}
+ & 0 & a & b & c & x & y \\
\hline
0 & 0 & a & b & c & x & y \\
a & a & 0 & y & x & c & b \\
b & b & x & 0 & y & a & c \\
c & c & y & x & 0 & b & a \\
x & x & b & c & a & y & 0 \\
y & y & c & a & b & 0 & x \\
\end{array}
\]

\[
\begin{array}{c|ccccccc}
. & 0 & a & b & c & x & y \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & b & c & 0 & 0 \\
b & 0 & a & b & c & 0 & 0 \\
c & 0 & a & b & c & 0 & 0 \\
x & 0 & 0 & 0 & 0 & 0 & 0 \\
y & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Here \{0, a\}, \{0, b\}, \{0, c\}, \{0, x, y\} are simple left normal N-subgroups of N.

And \(N = \{0, a\} + \{0, b\} + \{0, c\} + \{0, x, y\}\). So N is strictly semisimple.

But \(N\) is not semisimple.

Definitions 3.2.13: An N-group \(E\) is called SI N-group if every singular N-group is \(E\)-injective.

An N-group \(E\) is called SWI N-group if every weak singular N-group is \(E\)-injective.

An N-group \(E\) is called V N-group if every simple N-group is \(E\)-injective.

An N-group \(E\) is called \(\text{V}_c\) N-group if every simple commutative N-group is \(E\)-injective.

An N-group \(E\) is called GV N-group if every simple singular N-group is \(E\)-injective.

An N-group \(E\) is called \(S^2\) I N-group if every strictly semi-simple N-group is \(E\)-injective.

An N-group \(E\) is called \(S^3\) I N-group if every strictly semi-simple singular N-group is \(E\)-injective.

An N-group \(E\) is called \(S^2\text{SWI}\) N-group if every strictly semi-simple weak singular N-group is \(E\)-injective.

Definition 3.2.14: A near-ring \(N\) is called V near-ring if \(NN\) is a V N-group and GV near-ring if \(NN\) is a GV N-group.

A near-ring \(N\) is called \(\text{V}_c\) near-ring if \(NN\) is a \(\text{V}_c\) N-group.

Proposition 3.2.15: N-subgroups of a WI N-group are again WI N-groups.
Proof: Let E be a WI N-group.

$\Rightarrow W$ is E-injective.

And let E' be any N-subgroup of E.

We show E' is also a WI N-group.

That is we are to show W is also E'-injective.

Let $h : E' \to E$ be an N-monomorphism and K' be an N-subgroup of E' and $f : K' \to E'$ be any N-monomorphism.

Then hf is also an N-monomorphism, $hf : K' \to E$.

\[
\begin{array}{c}
\text{K'} \\
\downarrow hf \\
E
\end{array} \quad \begin{array}{c}
f \\
\downarrow h \\
E'
\end{array}
\]

Now W is E-injective, so for any N-subgroup K of E, the N-monomorphism $i : K \to E$ and any N-homomorphism $k : K \to W, \exists$ an N-homomorphism $\gamma : E \to W$ s.t. $k = \gamma i$.

i.e. the following diagram

\[
\begin{array}{c}
\text{K} \\
\downarrow k \\
W \\
\downarrow \gamma \\
\text{E}
\end{array}
\]

commutes.

Since W is E-injective, so for N-monomorphism $hf : K' \to E$ and $p : K' \to W$ we get
\(\gamma : E \to W \) such that \(\gamma(hf) = p \).

That is the diagram

\[
\begin{array}{ccc}
K' & \xrightarrow{f} & E' \\
\downarrow p & & \downarrow \gamma \\
W & \xrightarrow{\gamma h} & E
\end{array}
\]

Now \(f : K' \to E' \) is an N-monomorphism and for any N-homomorphism \(p : K' \to W \), we get \(\gamma h : E' \to W \) such that the diagram

\[
\begin{array}{ccc}
K' & \xrightarrow{f} & E' \\
\downarrow p & & \downarrow \gamma h \\
W & & \\
\end{array}
\]

commutes. That is \(p = (\gamma h)f \).

Therefore \(W \) is \(E' \)-injective.

Proposition 3.2.16: Homomorphic images of a \(WCI \) N-groups are again \(WCI \) N-groups.

Proof: Given \(0 \to E' \xrightarrow{h} E \xrightarrow{k} E'' \to 0 \) is exact and commutative N-group \(W \) is \(E' \)-injective.

We show \(W \) is \(E'' \)-injective.

Let \(E' \leq K \leq E \) and that \(E'' = E/E' \). Now we consider the canonical diagram
Now applying $\text{Hom}_N(-, W)$ we get the diagram

$$
0 \rightarrow \text{Hom}_N(E/E', W) \rightarrow \text{Hom}_N(E, W) \rightarrow \text{Hom}_N(E', W) \rightarrow 0
$$

Since $\text{Hom}_N(E/E', W) \rightarrow \text{Hom}_N(K/E', W)$ is epic, for all $\gamma \in \text{Hom}_N(K/E', W)$ there exists $\alpha \in \text{Hom}_N(E/E', W)$ such that $\phi(\alpha) = \gamma$.

$\Rightarrow \alpha f = \gamma$, where $f : K/E' \rightarrow E/E'$ is an N-monomorphism and $\phi = \text{Hom}_N(f, W)$.

Thus W is E/E'-injective.

$\Rightarrow E''$ is $W \lhd N$-group of E.

3.3. On direct sum of N-groups with Injectivity and E-injectivity:

In this section we study direct sums of relative injective N-groups and N-subgroups, direct product of relative injective N-groups. Using the notion of dominance of an element of an N-group by another N-group direct sums of relative injective N-groups several properties are established.

Proposition 3.3.1: Let \(N \) be a dgnr. If \(E_{\alpha} \) is a WI N-group for all \(\alpha \in A \) then \(E = \oplus_{\alpha \in A} E_{\alpha} \) is a WI N-group, where \(E \) is commutative.

Proof: Let \(E = \oplus_{\alpha \in A} E_{\alpha} \) and \(E_{\alpha} \) is WI N-group

\[\Rightarrow W \text{ is } E_{\alpha}-\text{injective for all } \alpha \in A. \]

We consider an N-subgroup \(K \) of \(E \) and the N-homomorphism \(h : K \to W \).

Let \(\Omega = \{ f : L \to W / K \leq L \leq E \text{ and } (f\mid K) = h \} \).

Let \(g : A \to W, h : B \to W \in \Omega. g \leq h \text{ if } A \subseteq B \subseteq E. \)

Then \(\Omega \) is ordered set by set inclusion. \(\Omega \) is clearly inductive.

Let \(\overline{h} : M \to W \) be a maximal element in \(\Omega \).

To get the proof it is sufficient to show that each \(E_{\alpha} \) is contained in \(M \).

Let \(K_{\alpha} = E_{\alpha} \cap M \).

Then \((\overline{h} \mid K_{\alpha}) : K_{\alpha} \to W, \) so since \(K_{\alpha} \leq E_{\alpha} \) and \(W \) is \(E_{\alpha}- \)injective, there is an N-homomorphism

\[\overline{h_{\alpha}} : E_{\alpha} \to W \text{ with } (\overline{h_{\alpha}} \mid K_{\alpha}) = (\overline{h} \mid K_{\alpha}). \]

If \(e_{\alpha} \in E_{\alpha} \) and \(m \in M \) such that \(e_{\alpha} + m = 0 \), then \(e_{\alpha} = -m \in K_{\alpha} \) and \(\overline{h_{\alpha}} (e_{\alpha}) + \overline{h} (m) \)
\[\bar{h} (-m) + \bar{h} (m) = 0.\]

Thus \(f : e_a + m \mapsto \overline{h_a} (e_a) + \bar{h} (m)\) is a well defined \(N\)-homomorphism \(f : E_a + M \to W\).

But \((f \mid M) = \bar{h}\), so by maximality of \(\bar{h}\), \(E_a \subseteq M\).

Proposition 3.3.2: \(W\) is \(E\)-injective \(\Rightarrow\) \(W\) is \(N_e\)-injective for all \(e \in E\).

Proof: Since \(N_e\) is an \(N\)-subgroup of \(E\). As \(W\) is \(E\)-injective, proposition 3.2.15 implies \(W\) is \(N_e\)-injective.

Proposition 3.3.3: Let \(N\) be a dgnr. If \(W\) is a commutative \(N\)-group and \(\{N_e\} \subseteq N_e\) is an independent family of normal \(N\)-subgroups of \(N\)-group \(E\), \(W\) is \(N_e\)-injective for all \(e \in E\), then \(W\) is \(E\)-injective.

Proof: \(W\) is \(N_e\)-injective for all \(e \in E\).

So by proposition 3.3.1, \(W\) is \(\oplus_{e \in E} N_e\)-injective.

Since \(E\) is a homomorphic image of \(\oplus_{e \in E} N_e\) by proposition 3.1.8 and since homomorphic image of a \(WcI\) \(N\)-group is \(WcI\) \(N\)-group by proposition 3.2.16.

So \(W\) is \(E\)-injective.

Proposition 3.3.4: If a finite direct sum of injective normal \(N\)-subgroups (ideals) of \(E\), i.e.

\[Q = \oplus Q_\alpha\]

where \(Q_\alpha\) is normal \(N\)-subgroup (or ideal) of \(E\) is injective, then each \(Q_\alpha\) is injective.

Proof: Let \(Q = \oplus Q_\alpha\) be injective \(N\)-subgroup and consider the \(N\)-monomorphism \(f_\alpha : M \to Q_\alpha\), where \(M\) is some \(N\)-subgroup of \(E\).
\(Q \) is direct sum, for any \(\alpha = 1, 2, 3, \ldots, n \) there is the inclusion map \(i_\alpha : Q_\alpha \to Q \) and the projection on \(\Pi_\alpha : Q \to Q_\alpha \) such that \(\Pi_\alpha i_\alpha = 1_{Q_\alpha} \).

Consider a diagram

\[
\begin{array}{c}
O \xrightarrow{f_\alpha} M \xrightarrow{\Phi} N' \\
\downarrow \quad \downarrow i_\alpha \\
Q_\alpha \xrightarrow{i_\alpha} Q
\end{array}
\]

with top row exact.

Since \(Q \) is injective, there is an \(N \)-homomorphism \(h_\alpha : N' \to Q \), such that \(h_\alpha \Phi = i_\alpha f_\alpha \).

Now define \(\Psi : N' \to Q_\alpha \) by \(\Psi_\alpha = \Pi_\alpha h_\alpha \).

Since \(\Pi_\alpha i_\alpha = 1_{Q_\alpha} \), it follows that \(\Psi_\alpha \Phi = \Pi_\alpha h_\alpha \Phi = \Pi_\alpha i_\alpha f_\alpha = f_\alpha \).

So, the diagram

\[
\begin{array}{c}
O \xrightarrow{f_\alpha} M \xrightarrow{\Phi} N' \\
\downarrow \Psi_\alpha \downarrow \downarrow \Pi_\alpha \\
Q \xrightarrow{i_\alpha} Q_\alpha
\end{array}
\]

is commutative.

Thus \(Q_\alpha \) is injective.

Proposition 3.3.5: Let \(N \) be a dgmr. A finite direct sum of injective normal \(N \)-subgroups (ideals) of \(E \), i.e. \(Q = \bigoplus Q_\alpha \), where \(Q_\alpha \) is normal \(N \)-subgroup (or ideal) of \(E \), is injective if each \(Q_\alpha \) is injective.
Proof: Let \(Q = \oplus Q_\alpha \) with each \(Q_\alpha \) injective \(N \)-group.

Now consider a diagram

\[
\begin{array}{ccc}
O & \xrightarrow{f} & M \\
\downarrow & & \Phi \downarrow \\
Q & \rightarrow & N'
\end{array}
\]

where \(M, N' \) are \(N \) subgroups of \(E \) with the top row exact.

For any \(\alpha = 1, 2, 3, \ldots, n \), there is the canonical inclusion \(i_\alpha : Q_\alpha \rightarrow Q \) and the projection \(\Pi_\alpha : Q \rightarrow Q_\alpha \), so there are the \(N \)-homomorphisms \(\Pi_\alpha f : M \rightarrow Q_\alpha \).

Since \(Q_\alpha \) is injective there exists a \(N \)-homomorphism \(h_\alpha : N' \rightarrow Q_\alpha \) such that \(h_\alpha \Phi = \Pi_\alpha f \).

Now define a map \(h : N' \rightarrow Q \) by the formula

\[
h(x) = \sum_{\alpha=1}^{n} h_\alpha (x)
\]

\[= (h_1(x) + \ldots + h_n(x)) \quad \forall x \in N'.\]

Then \(h \) is \(N \)-homomorphism.

Since \(h(x_1 + x_2) = (h_1(x_1 + x_2) + \ldots + h_n(x_1 + x_2)) \)

\[= (h_1(x_1) + h_1(x_2) + \ldots + h_n(x_1) + h_n(x_2))\]

\[= h_1(x_1) + \ldots + h_n(x_1) + h_1(x_2) + \ldots + h_n(x_2) \quad [\text{since } Q \text{ is normal } N\text{-subgroup}]\]

\[= h(x_1) + \ldots + h(x_2)\]

\(h(n'x) = (h_1(n'x) + \ldots + h_n(n'x)) \)

\[= h_1(n'x) + \ldots + h_n(n'x)\]
\[= n' h_1(x) + \ldots \ldots + n' h_n(x)\]

\[= \sum_{i=1}^{n} s_i (h_i(x)) + \ldots \ldots + \sum_{i=1}^{n} s_i (h_n(x))\]

\[= s_1((h_1(x)) + \ldots \ldots + h_n(x))+ \ldots \ldots + s_n((h_1(x)) + \ldots \ldots + h_n(x))\]

\[= s_1 h(x) + \ldots \ldots + s_n h(x)\]

\[= (\sum_{i=1}^{n} s_i) h(x) = n' h(x)\].

We shall show the diagram

\[
\begin{array}{c}
\text{O} \\
\downarrow f \\
\text{Q} \\
\downarrow h \\
\text{M} \quad \phi \quad \downarrow \Phi \\
\downarrow f \\
\text{Q} \\
\downarrow \Pi_a \\
\text{N'} \\
\end{array}
\]

\[\text{commutes. i.e. } f = h\Phi.\]

Since Q is direct sum, for any \(x \in \text{N'} \)

\[h\phi(x) = (h_1\phi(x) + h_2\phi(x) + \ldots \ldots + h_n \phi(x))\]

\[= (\Pi_1 f (x) + \Pi_2 f (x) + \ldots \ldots + \Pi_n f (x))\]

\[= f(x)\]

\[\therefore h \phi = f.\]

Thus Q is injective.

Corollary 3.3.6: Let N be a dgnr. A finite direct sum of injective normal N-subgroups (ideals) of E, i.e. \(Q = \bigoplus Q_a \), where \(Q_a \) is normal N-subgroup (or ideal) of the group E, is injective if and only if each \(Q_a \) is injective.
Theorem 3.3.7: A finite direct sum of injective \mathbb{N}-groups, that is $Q = \oplus Q_\alpha$, where Q_α is \mathbb{N}-groups is injective if and only if each Q_α is injective.

Proof: Let Q be injective, to show each Q_α is injective. Proof is same as theorem 3.3.4.

Conversely, let each Q_α be injective, to show Q is injective.

Now consider a diagram

\[
\begin{array}{ccc}
O & \xrightarrow{f} & M \\
\downarrow & & \downarrow \Phi \\
& Q & \xrightarrow{h} \ N'
\end{array}
\]

where M, N' are \mathbb{N} groups with the top row exact.

For any $\alpha = 1, 2, 3, \ldots, n$, there is the canonical inclusion $i_\alpha : Q_\alpha \rightarrow Q$ and the projection $\Pi_\alpha : Q \rightarrow Q_\alpha$, so there are the \mathbb{N}-homomorphisms $\Pi_\alpha f : M \rightarrow Q_\alpha$.

Since Q_α is injective, there exists an \mathbb{N}-homomorphism $h_\alpha : N' \rightarrow Q_\alpha$ such that $h_\alpha \Phi = \Pi_\alpha f$.

Now define a map $h : N' \rightarrow Q$ by the formula

\[
h(x) = (h_1(x), \ldots, h_n(x)) \quad \forall x \in N'.
\]

Then h is \mathbb{N}-homomorphism.

Since $h(x_1 + x_2) = (h_1(x_1 + x_2), \ldots, h_n(x_1 + x_2))$

\[
= (h_1(x_1) + h_1(x_2), \ldots, h_n(x_1) + h_n(x_2))
\]

\[
= (h_1(x_1), \ldots, h_n(x_1)) + (h_1(x_2), \ldots, h_n(x_2))
\]

\[
= h(x_1) + h(x_2)
\]

\[
h(n'x) = (h_1(n'x), \ldots, h_n(n'x))
\]
\[
(n' h_1(x), \ldots \ldots, n'h_n(x))
\]
\[
= n' (h_1(x), \ldots \ldots, h_n(x))
\]
\[
= n'h(x).
\]

We shall show the diagram commutes, i.e. \(f = h \circ \phi\).

Since \(Q\) is direct sum, for any \(x \in N'\)

\[
h \circ \phi(x) = (h_1 \circ \phi(x), h_2 \circ \phi(x), \ldots \ldots, h_n \circ \phi(x))
\]
\[
= (\Pi_1 f(x), \Pi_2 f(x), \ldots \ldots, \Pi_n f(x))
\]
\[
= f(x)
\]

\[\therefore h \circ \phi = f.\]

Thus \(Q\) is injective.

Theorem 3.3.8: Let \(N\) be a near-ring and \(\{Q_i\}_{i=1}^n\) a family of \(E\)-injective \(N\)-groups. Then the product \(Q = \Pi_{i=1}^n Q_i\) is \(E\)-injective.

Proof: Let \(A \subseteq E\) be an \(N\)-subgroup of \(E\) and \(f : A \rightarrow Q\) an \(N\)-homomorphism.

It is enough to show \(f\) can be extended to \(E\).
For $i \in I$ denote $\pi_i : Q \to Q_i$ the projection map.

Since Q_i is E-injective for any $i \in I$, so the N-homomorphism $\pi_i f : A \to Q_i$ can be extended to $f'_i : E \to Q_i$. Then we have $f' : E \to Q$ by $f'(e) = (f'_i(e))_{i \in I}$.

If $a \in A$, then $f'(a) = f(a)$, so f' is an extension of f.

Thus Q is E-injective.

Definition 3.3.9: For an N-group A an element $x \in A$ is said to be dominated by N-group E if $\text{Ann}_N(x) \supset \text{Ann}_N(e)$ for some $e \in E$.

Given a family $\{A_\alpha\}_{\alpha \in J}$ of N-groups. Let x be the element of $\prod_{\alpha \in J} A_\alpha$ whose α-component is x_α.

We define $I_x = \{n \in N/ nx \in \bigoplus_{\alpha \in J} A_\alpha\}$.

Then $x \in \prod_{\alpha \in J} A_\alpha$ is called a special element if $I_x x_\alpha = 0$ for almost all α. In other words \exists a finite subset F of J such that $nx_\alpha = 0$ for all $n \in I_x$ and for all $\alpha \in F$.

Theorem 3.3.10: If $\bigoplus_{\alpha \in J} A_\alpha$ is E-injective then each A_α is E-injective and every element of $\prod_{\alpha \in J} A_\alpha$ dominated by E is special.

Proof: Let $A = \bigoplus_{\alpha \in J} A_\alpha$ be E-injective.

Consider the N-homomorphism $f_\alpha : N' \to A_\alpha$.

\[\cdot \cdot \cdot A \text{ is direct sum, } N' \text{ some } N \text{-group of } N \text{ for any } \alpha \in J, \text{ there is the inclusion map} \]

\[i_\alpha : A_\alpha \to A \text{ and the projection } \pi_\alpha : A \to A_\alpha \text{ such that } \pi_\alpha i_\alpha = 1_{A_\alpha}. \]

Consider a diagram,
Since A is E-injective, there exists a homomorphism $h_a : E \to A$ such that $h_a \Phi = i_a f_a$.

Now define $\Psi_a : E \to A_a$ by $\Psi_a = \pi_a h_a$.

Since $\pi_a i_a = 1_{A_a}$, it follows that $\Psi_a \Phi = \pi_a h_a \Phi = \pi_a i_a f_a = f_a$

So the diagram

Thus A_a is E-injective.

Let $x \in \Pi_a A_a$ be dominated by $E \Rightarrow$ there is an $e \in E$ such that $\text{Ann}_N(x) \supset \text{Ann}_N(e)$.

Then it gives an N-homomorphism $f : N \to \Pi A_a$ defined by $\lambda e \to \lambda x$ ($\lambda \in N$).

Let $(\lambda_1 e), (\lambda_2 e) \in N e$ and

$f(\lambda_1 e) \neq f(\lambda_2 e)$

$\Rightarrow (\lambda_1 x) \neq (\lambda_2 x)$

$\Rightarrow (\lambda_1 - \lambda_2) x \neq 0$
\[\Rightarrow (\lambda_1 - \lambda_2) \notin \text{Ann}_N(x) \]

\[\Rightarrow (\lambda_1 - \lambda_2) \notin \text{Ann}_N(e) \quad \text{[since \(\text{Ann}_N(x) \supseteq \text{Ann}_N(e) \)]} \]

\[\Rightarrow (\lambda_1 - \lambda_2)e \neq 0 \]

\[\Rightarrow (\lambda_1 \ e) \neq (\lambda_2 \ e) \]

.: the mapping is well defined.

\[
f(\lambda_1 \ e + \lambda_2 \ e) = f((\lambda_1 + \lambda_2) \ e)
\]

\[= (\lambda_1 + \lambda_2)x \]

\[= (\lambda_1 x + \lambda_2 x) \]

\[= f(\lambda_1 \ e) + f(\lambda_2 \ e) \]

Next for \(n \in \mathbb{N} \), \(f(n(\lambda_1 \ e)) = f(n\lambda_1 \ e) \)

\[= (n\lambda_1)x \]

\[= n(\lambda_1 x) \]

\[= n \ f(\lambda_1 \ e) \]

Thus \(f \) is an \(\mathbb{N} \)-homomorphism.

The image of the \(\mathbb{N} \)-subgroup \(I_x \ e \) by \(f \) is clearly \(I_x x \ (\subset \oplus A_\alpha) \).

Thus the restriction of \(f \) to \(I_x \ e \) is regarded as an \(\mathbb{N} \)-homomorphism \(I_x \ e \rightarrow \oplus A_\alpha \).

Since \(\oplus A_\alpha \) is \(\mathbb{E} \)-injective and so \(\text{Ne} \)-injective by proposition 3.3.2.

So, we get \(\mathbb{N} \)-homomorphism \(\text{Ne} \rightarrow \oplus A_\alpha \) which means that there exists a \(u \in \oplus A_\alpha \) such that \(\lambda x = \lambda u \) (for all \(\lambda \in I_x \)).

It follows that \(I_x x_\alpha = I_x u_\alpha \) for all \(\alpha \in J \).

But since \(u_\alpha = 0 \) for almost all \(\alpha \), it follows that \(I_x x_\alpha = 0 \) for almost all \(\alpha \) too.
\[\Rightarrow x \text{ is special.} \]

Theorem 3.3.11: If \(\{N_e\}_{e \in E} \) is an independent family of normal \(N \)-subgroups of \(N \)-group \(E \) in a dgnr near-ring \(N \), \(\oplus_{\alpha \in J} A_{\alpha} \) is commutative \(N \)-group then each \(A_{\alpha} \) is \(E \)-injective and every element of \(\Pi_{\alpha \in J} A_{\alpha} \) dominated by \(E \) is special implies \(\oplus_{\alpha \in J} A_{\alpha} \) is \(E \)-injective.

Proof: let each \(A_{\alpha} \) is \(E \)-injective and every element of \(\Pi_{\alpha \in J} A_{\alpha} \) dominated by \(E \) is special.

Let \(e \in E \) and consider the \(N \)-subgroup \(N_e \) of \(E \).

Let \(J \) be an \(N \)-subgroup of \(N \).

Then \(J e \) is an \(N \)-subgroup of \(N_e \).

[Let \(s, t \in J e, s, t \in J, s + t e = (s + t)e \in J e \) and for \(n \in N, n(se) = (ns)e \in J e \), since \(ns \in J \) as \(J \) is \(N \)-subgroup of \(N \)]

Let there be given an \(N \)-homomorphism \(h : J e \rightarrow \oplus A_{\alpha} \).

Then since \(\oplus A_{\alpha} \subseteq \Pi A_{\alpha} \) and \(\Pi A_{\alpha} \) is \(E \)-injective (as each \(A_{\alpha} \) is \(E \)-injective, by proposition 3.3.8) whence \(N e \)-injective (by proposition 3.3.2), \(h \) can be extended to an \(N \)-homomorphism \(N e \rightarrow \Pi A_{\alpha} \).

Let \(x \in \Pi A_{\alpha} \) and we define the \(N \)-homomorphism as \(\lambda e \rightarrow \lambda x \) \((\lambda \in N)\)

Therefore it follows that \(J x = h (J e) \subseteq \oplus A_{\alpha} \), whence \(J \subseteq I_x \).

On the otherhand since clearly \(Ann_N (e) \subseteq Ann_N (x) \), \(x \) is dominated by \(E \) and thus \(x \) is special by assumption

\[\Rightarrow I_x x_{\alpha} = 0 \text{ whence } J x_{\alpha} = 0 \text{ for almost all } \alpha. \]
Let u be the element of ΘA_α, whose α-component is x_α or 0 according as $J x_\alpha \neq 0$ or $J x_\alpha = 0$.

Then it is clear that $\lambda u = \lambda x$ for all $\lambda \in J$.

Further, it is also clear that $\operatorname{Ann}_M(e) \subset \operatorname{Ann}_N(x) \subset J$ and therefore the mapping gives an N-homomorphism $f : Ne \rightarrow \Theta A_\alpha$ which is an extension of h, because $f(\lambda e) = \lambda u = \lambda x \forall \lambda \in J$.

This implies that ΘA_α is N-injective and so E-injective by proposition 3.3.3.

Corollary 3.3.12: Let N be a dgnr. If $\{Ne\}_{e \in E}$ is an independent family of normal N-subgroups of N-group E, $\Theta_{aej} A_\alpha$ is commutative N-group then $\Theta_{aej} A_\alpha$ is E-injective if and only if each A_α is E-injective and every element of $\Pi_{aej} A_\alpha$ dominated by E is special implies $\Theta_{aej} A_\alpha$ is E-injective

Theorem 3.3.13: Suppose $\{ A_\alpha \}_{aej}$ is a family of E-injective N-groups such that for every countable subset k of J, $\Theta_{aej} A_\alpha$ is E-injective. Then $\Theta_{aej} A_\alpha$ is itself E-injective.

Proof: Assume that $\Theta_{aej} A_\alpha$ is not E-injective.

Then by theorem 3.3.10, there exists an $x \in \Pi_{aej} A_\alpha$ which is dominated by E but is not special $\Rightarrow I_\alpha x_\alpha \neq 0$ for infinitely many $\alpha \in J$.

Let k be an infinite countable subset of the infinite set $\{ \alpha \in J / I_\alpha x_\alpha \neq 0 \}$.

Let y be element of $\Pi_{aej} A_\alpha$, whose α-component y_α is equal to x_α for all $\alpha \in K$.

Then clearly $I_\alpha \subset I_y$, so that it follows that y is dominated by E and $I_\alpha y_\alpha = I_y x_\alpha \neq 0 \forall \alpha \in K$.

This implies again by theorem 3.3.10, that $\Theta_{aej} A_\alpha$ is not E-injective (because each A_α is E-injective by our assumption). This is a contradiction and so the proof is complete.
3.4: E-injective and injective N-groups with chain conditions:

In this section we study E-injective N-groups with chain conditions. In particular, E-injective N-groups with descending chain condition are investigated. It is shown that the singular and semi-simple characters play a vital role in characterization of E-injective N-groups.

Theorem 3.4.1: Let N be dgnr. If \(\{ N_e \}_{e \in E} \) is an independent family of normal N-subgroups of N-group E, \(\Theta_{\alpha \in J} A_\alpha \) is commutative N-group then direct sum of any family \(\{ A_\alpha \} \) of E-injective N-groups is E-injective if E is Noetherian.

Proof: let \(\{ A_\alpha \} \) be a family of E-injective N-group.

Let x be an element of \(\Pi A_\alpha \), dominated by e.

Then there is an \(e \in E \) such that \(\text{Ann}_N(x) \subset \text{Ann}_N(e) \).

Consider \(I_x(e) \).

Since clearly \(\text{Ann}_N(x) \subset I_x \), whence \(\text{Ann}_N(e) \subset I_x \), it follows that \(I_x / \text{Ann}_N(x) \cong I_x(e) \).

On the other hand \(I_x(e) \) is a N-subgroup of \(N_e \), so N subgroup of Noetherian N-group E.

Hence, \(I_x / \text{Ann}_N(x) \) is finitely generated

\(\Rightarrow \) there exists a finite number of elements \(\lambda_1, \lambda_2, \ldots, \lambda_n \) of \(I_x \) such that

\[I_x = N\lambda_1 + N\lambda_2 + \cdots + N\lambda_n + \text{Ann}_N(x) \]

It follows therefore

\[I_x x_\alpha = N\lambda_1 x_\alpha + N\lambda_2 x_\alpha + \cdots + N\lambda_n x_\alpha \] for all components \(x_\alpha \).

Since however for each i, \(\lambda_1 x_\alpha = 0 \), for almost all \(\alpha \), it follows that \(I_x x_\alpha = 0 \) for almost all \(\alpha \).
$\Rightarrow \text{x is special.}$

Thus $\oplus A_\alpha$ is \mathcal{E}-injective by theorem 3.3.11.

Proposition 3.4.2: If $\{N_e\}_{e \in \mathcal{E}}$ is an independent family of normal \mathcal{N}-subgroups of \mathcal{N}-group E in a dgnr near-ring \mathcal{N}, direct sum of \mathcal{E}-injective \mathcal{N}-groups is commutative \mathcal{N}-group then E is Noetherian $V \mathcal{N}$-group($V_c \mathcal{N}$-group) implies every strictly semi- simple \mathcal{N}-group is \mathcal{E}-injective.

Proof: E is Noetherian V- \mathcal{N}-group

$\Rightarrow E$ is Noetherian and every simple \mathcal{N}-group is \mathcal{E}- injective.

Again direct sum of \mathcal{E}-injective \mathcal{N}-groups is \mathcal{E}- injective as E is Noetherian

(by theorem 3.4.1).

Let K be any strictly semi simple \mathcal{N}-group

$\Rightarrow K$ is direct sum of simple normal \mathcal{N}-subgroups.

So K is \mathcal{E}- injective.

Proposition 3.4.3: For a finitely generated \mathcal{N}-group E every countably generated strictly semi- simple \mathcal{N}-group is \mathcal{E}- injective implies E is weakly Noetherian $V_c \mathcal{N}$-group.

Proof: Suppose $\{A_\alpha\}_{\alpha \in J}$ is a family of \mathcal{N}-groups such that for every countable subset K of J, $\bigoplus_{\alpha \in K} A_\alpha$ is \mathcal{E}- injective. Then by theorem 3.3.13 $\bigoplus_{\alpha \in J} A_\alpha$ itself \mathcal{E}-injective.

Now given that every countably generated strictly semi simple \mathcal{N}-group is \mathcal{E}-injective.

To show E is weakly Noetherian and every simple commutative \mathcal{N}-group is \mathcal{E}-injective.

Let U be a countably generated strictly semi- simple \mathcal{N}-group.
Then \(U = \bigoplus U_\alpha \), where \(U_\alpha \) is simple normal \(N \)-subgroups, so \(U_\alpha \)'s can be taken as commutative \(N \)-groups and \(\alpha \in K \), \(K \) is countable subset of \(J \) (as \(U \) countably generated).

Given \(U \) is \(E \)-injective. So we have \(\bigoplus U_\alpha \), \(\alpha \in J \) is also \(E \)-injective (By theorem 3.3.13).

So by theorem 3.3.10, we get every \(U_\alpha \) is \(E \)-injective

\[\Rightarrow E \text{ is } V_c \text{ } N \text{-group.} \]

Next to show \(E \) is weakly Noetherian.

Given \(E \) is finitely generated and \(W \) countably generated semi-simple \(N \)-group & \(W \) is \(E \)-injective.

Let \(N_1 \subseteq N_2 \subseteq N_3 \subseteq \ldots \ldots \) be an ascending chain of distinct ideals of \(E \).

Let \(f_k : N_k \rightarrow W \) \((k = 1, 2, 3, \ldots \ldots \infty) \)

As \(W \) is \(E \)-injective, for inclusion map \(i_k : N_k \rightarrow E \), \(\exists \) a map \(\gamma_k : E \rightarrow W \) s.t. \(f_k = \gamma_k i_k \)

Let \(N' = \Sigma_{k=1}^\infty N_k \)

Define the map \(f : N' \rightarrow W \) by

\[f(x) = \Sigma_{k=1}^\infty f_k(x) = \Sigma_{k=1}^\infty \gamma_k i_k(x) \]

\(f \) is well defined.

\(\because W \) is \(E \)-injective, \(\exists \) a map \(g : E \rightarrow W \) extending \(f \).

But \(E \) is finitely generated & \(g(E) \subseteq W \), \(W \) countably generated. So \(g \) can be defined as

\[g(x) = \sum_{k=1}^m \gamma_k i_k(x) \]

for some positive integer \(m \), which gives chain of ideals must be finite.
Corollary 3.4.4: For a finitely generated N-group E, every strictly semi-simple N-group is E-injective implies E is weakly Noetherian Vc N-group.

Proposition 3.4.5: For $dgnr$ N, if E is a finitely generated S^3I-N-group, then $\frac{E}{\text{Soc}(E)}$ is a weakly Noetherian Vc N-group.

Proof: From the above corollary 3.4.4, it is enough to show that every strictly semi-simple N-group is $\frac{E}{\text{Soc}(E)}$ injective.

Let L be a strictly semi-simple N-group.

So as N $dgnr$, L is a semi-simple N-group.

Let $\frac{M}{\text{Soc}(E)}$ be an ideal of $\frac{E}{\text{Soc}(E)}$. $f: \frac{M}{\text{Soc}(E)} \rightarrow L$ is a non-zero N-homomorphism.

Let $\frac{K}{\text{Soc}(E)} = \text{Ker} f$.

We claim K is essential ideal in M.

For if $K \cap I = 0$ for some non-zero ideal I of M then $I \equiv \frac{I+K}{K}$ and since the latter is isomorphic to an ideal of L, it follows that for some ideal $I_1 \neq 0$ and contained in I that $I_1 \subseteq L$, hence $I_1 \subseteq \text{Soc}(E) \subseteq K$, a contradiction.

Now $\frac{M}{K}$ singular, we may take L singular, since $f(\frac{M}{K}) \subseteq Z(L)$.

Let $\eta: M \rightarrow \frac{M}{\text{Soc}(E)}$ denote the quotient map and consider the map $f.\eta: M \rightarrow L$.

L is E-injective $f.\eta$ extends to a map of E into L.

\triangleright $\text{Soc}(E) \subseteq K$. This yields a map of $\frac{E}{\text{Soc}(E)}$ into L by proposition 3.2.3.
Proposition 3.4.6: Let N be a dgnr If E is an N-group satisfying the following conditions

(i) $\{Ne\}_{e \in E}$ is an independent family of normal N-subgroups of E,
(ii) direct sum of E-injective N-groups is a commutative N-group
(iii) No non-zero homomorphic image of Nx, $\forall x(\neq 0) \in Soc(E)$, is semi-simple,
singular
(iv) $\frac{E}{Soc(E)}$ is Noetherian V N-group,

then E is an S^3I-N-group.

Proof: Let L be a strictly semi-simple singular N-group.

Let M be an N-subgroup of E.

$f: M \rightarrow L$ a non-zero map with $\ker f = K$.

Then by given condition $Soc(E) \cap M$ is contained in K.

[For $x \in Soc(E) \cap M \Rightarrow x \in Soc(E)$, $x \in M \Rightarrow Nx \subseteq Soc(E)$, $Nx \subseteq M \Rightarrow Nx \in Soc(E) \cap M$].

So by proposition 3.2.3, \exists an N-homomorphism $f': \frac{M}{Soc(E) \cap M} \rightarrow L$.

Since $\frac{M}{Soc(E) \cap M} \cong \frac{Soc(E) + M}{Soc(E)}$, so $f': \frac{Soc(E) + M}{Soc(E)} \rightarrow L$.

As $\frac{E}{Soc(E)}$ is Noetherian V N-group and L semi-simple singular by proposition 3.4.2, L is

$\frac{E}{Soc(E)}$-injective, that is f' is extended to $g': \frac{E}{Soc(E)} \rightarrow L$.

If we define $g: E \rightarrow L$ by $g(e) = g'(\bar{e} + Soc(E))$. g is extension of f.
Proposition 3.4.7: Let E be an N-group. Then E/M is weakly Noetherian for every essential ideal M of E if and only if E has A.C.C. on essential ideals.

Proof: Let M be an essential ideal of E.

Then E/M weakly Noetherian

We show E has A.C.C. on essential ideals.

Let $M_1 \subset M_2 \subset M_3 \subset \ldots \ldots$ \rightarrow (1) be a chain of ideals of E where $M_i \leq E$.

Considering an essential N-subgroup $M \subseteq M_i \forall i$, we can construct another chain

$M_i/M \subset M_2/M \subset M_3/M \subset \ldots \ldots$ of E/M.

Since E/M is weakly Noetherian we get $M_i/M = M_{i+1}/M$ for some i.

Now $M_i \subset M_{i+1}$. Our aim is to show $M_{i+1} \subset M_i$.

Let $x_{i+1} \in M_{i+1}$ but $x_{i+1} \notin M$.

Then $x_{i+1} + M \in M_{i+1}/M \Rightarrow x_{i+1} + M \in M_i/M \Rightarrow x_{i+1} \in M_i$ (since $x_{i+1} \notin M$).

So $M_i = M_{i+1}$.

$\Rightarrow E$ has A.C.C. on essential ideals.

Converse is clear.

Proposition 3.4.8: N-group E is almost weakly Noetherian if and only if E/M is weakly Noetherian for every essential ideal M of E.

Proof: Let $E/SocE$ be weakly Noetherian.

We know if N ideal of M, M weakly Noetherian $\Leftrightarrow N \& M/N$ weakly Noetherian, by proposition 4.1.7.
M is essential ideal of E and SocE is the intersection of all essential ideals \(\Rightarrow \text{Soc} \ E \subseteq M \).

\[\Rightarrow \frac{E}{\text{Soc} \ E} \text{ is weakly Noetherian } \iff \frac{M}{\text{Soc} \ E} \text{ and } \frac{E}{\text{Soc} \ E} \cong \frac{E}{M} \text{ weakly Noetherian.} \]

Conversely, \(\frac{E}{M} \) is weakly Noetherian for every essential ideal M of E.

We show \(\frac{E}{\text{Soc} \ E} \) is weakly Noetherian. It is enough to show that every essential ideal of \(\frac{E}{\text{Soc} \ E} \)
is finitely generated by proposition 3.4.7.

Let \(\frac{M}{\text{Soc} \ E} \) be an essential ideal of \(\frac{E}{\text{Soc} \ E} \).

Let \(k \) be an ideal of \(M \) maximal with respect to \(K \cap \text{Soc} \ E = 0 \).

Then \(K \oplus \text{Soc} \ E \) is essential in \(M \) and hence essential in \(E \).

\([K \oplus \text{Soc} \ E \text{ ideal of } M, \text{ let } M' \text{ ideal of } M \text{ such that } M' \cap (K \oplus \text{Soc} \ E) = 0. \text{Then } M' \oplus (K \oplus \text{Soc} \ E) \text{ is a direct sum } \Rightarrow M' \oplus K \oplus \text{Soc} \ E \text{ is a direct sum.} \text{Whence } (M' \oplus K) \cap \text{Soc} \ E ' = 0. \text{By maximality of } K, (M' \oplus K) = K, \text{ i.e } M' = 0.] \)

Then \(\frac{E}{K \oplus \text{Soc} \ E} \) is weakly Noetherian. So \(\frac{M}{K \oplus \text{Soc} \ E} \) is finitely generated.

From the exactness of the sequence \(0 \rightarrow K \rightarrow \frac{M}{\text{Soc} \ E} \rightarrow \frac{M}{K \oplus \text{Soc} \ E} \rightarrow 0 \), it suffices to show \(K \) is finitely generated.

We claim that \(K \) is finite dimensional.

For, if not \(\exists \) an infinite direct sum of non-zero ideals \(\oplus_{i \in I} K_i \) which is essential in \(K \).

Since \(K_i \cap \text{Soc} \ E = 0 \), each \(K_i \) has a proper essential ideal \(T_i \).

[since \(K_i \cap \text{Soc} \ E = \text{Soc} \ K_i = 0 \).]
Let $T = \bigoplus_{i \in I} T_i$.

Then T is an essential ideal of K.

Let K' be an ideal of K, $T = \bigoplus_{i \in I} T_i$, where T_i are essential ideals of K.

Now $K' = \bigoplus_{i \in I} K'_i$, $K'_i \subseteq K_i$. Then $T_i \cap K'_i \neq 0$

$\Rightarrow \bigoplus_{i \in I} T_i \cap K'_i \neq 0$

$\Rightarrow T \cap \bigoplus_{i \in I} K'_i \neq 0$.

$\Rightarrow T \cap K' \neq 0$.

Again $\text{Soc}E$ is an essential ideal of $\text{Soc}E$ and $T \cap \text{Soc}E = 0$.

So $T \oplus \text{Soc}E \leq K \oplus \text{Soc}E \Rightarrow T \oplus \text{Soc}E$ is an essential ideal of E.

Hence $E / T \oplus \text{Soc}E$ is weakly Noetherian,

As ideal of a weakly Noetherian N-group is weakly Noetherian, $\frac{\bigoplus_{i \in I} K_i}{T \oplus \text{Soc}E}$ is weakly Noetherian.

$\Rightarrow \frac{\bigoplus_{i \in I} T_i}{T \oplus \text{Soc}E}$ is weakly Noetherian.

$\frac{\bigoplus_{i \in I} T_i}{T \oplus \text{Soc}E} \leq \frac{\bigoplus_{i \in I} K_i}{T \oplus \text{Soc}E}$ and $\frac{\bigoplus_{i \in I} K_i}{T \oplus \text{Soc}E}$ weakly Noetherian imply $\frac{\bigoplus_{i \in I} K_i}{T \oplus \text{Soc}E} \cong \frac{\bigoplus_{i \in I} K_i}{\bigoplus_{i \in I} T_i}$ weakly Noetherian, a contradiction, since it is an infinite direct sum of non-zero N-groups.

Thus K is finite dimensional.

Let $(K_i)_{i=1}^n$ be a family of non-zero ideals of K such that $\bigoplus_{i=1}^n K_i$ is essential in K.

$\Rightarrow \bigoplus_{i=1}^n K_i \leq K$, so $\bigoplus_{i=1}^n K_i \oplus \text{Soc}E \leq K \oplus \text{Soc}E \leq E$.
$\Rightarrow \oplus_{i=1}^{n} K_i \oplus \text{Soc}E \leq E.$

$\Rightarrow \frac{E}{\oplus_{i=1}^{n} K_i \oplus \text{Soc}E}$ is weakly Noetherian.

We define $f : \frac{K}{\oplus_{i=1}^{n} K_i} \rightarrow \frac{K}{\oplus_{i=1}^{n} K_i \oplus \text{Soc}E}$ by $f(k + \oplus_{i=1}^{n} K_i) = f(k + \oplus_{i=1}^{n} K_i \oplus \text{Soc}E)$

Now $f(k_1 + \oplus_{i=1}^{n} K_i) \neq f(k_2 + \oplus_{i=1}^{n} K_i)$

$\Rightarrow (k_1 + \oplus_{i=1}^{n} K_i \oplus \text{Soc}E) \neq (k_2 + \oplus_{i=1}^{n} K_i \oplus \text{Soc}E)$

Next, let $\bar{k} \in \frac{K}{\oplus_{i=1}^{n} K_i \oplus \text{Soc}E}$.

If $\bar{k} = k_1 + \oplus_{i=1}^{n} K_i \oplus \text{Soc}E$, $\exists k_1 + (\oplus_{i=1}^{n} K_i) \in \frac{K}{\oplus_{i=1}^{n} K_i}$ such that

$f(k_1 + (\oplus_{i=1}^{n} K_i)) = k_1 + (\oplus_{i=1}^{n} K_i \oplus L).$

So f is onto, that is f is isomorphism.

Thus $\frac{K}{\oplus_{i=1}^{n} K_i}$ is isomorphic to the ideal $\frac{K}{\oplus_{i=1}^{n} K_i \oplus \text{Soc}E}$ of weakly noetherian N-group

$\frac{E}{\oplus_{i=1}^{n} K_i \oplus \text{Soc}E}$. So we have that $\frac{K}{\oplus_{i=1}^{n} K_i}$ is finitely generated, whence K is finitely generated.

Thus $\frac{E}{\text{Soc}E}$ is weakly Noetherian.

Proposition 3.4.9: If N-group E is almost weakly Noetherian then E has A.C.C. on essential ideals.

Proof: Given $\frac{E}{\text{Soc}E}$ is weakly Noetherian.

To show E has A.C.C. on essential ideals.
Soc E is the intersection of all essential ideals of E.

Hence if \(\frac{E}{\text{Soc} E} \) is weakly Noetherian, E has A.C.C. on essential ideals.

Proposition 3.4.10: Let N be a dgnr. If N-group E has A.C.C. on essential ideals then E is almost weakly Noetherian.

Proof: We assume that E has A.C.C. on essential ideals.

Let \(A \subseteq B \) be ideals of M such that A is essential in B.

By Zorn's lemma there is a maximal ideal L of E such that \(L \cap A = 0 \).

And \(A \oplus L \) is essential in E.

Since \(A + L = A \oplus L \), so that \(A \oplus L \) is an ideal of E. Let C ideal of E with \(C \cap (A \oplus L) = 0 \). Then \((A \oplus L) \oplus C \) is direct \(\Rightarrow (A \oplus L) + C = (A \oplus L \oplus C) \) whence \(A \cap (L \oplus C) = 0 \). By maximality of L we obtain \(L \oplus C = L \) Thus \(C = 0 \). \(A \oplus L \) essential ideal of E.

Hence \(E/(A \oplus L) \) satisfies ACC on its ideals.

We consider the map \(\phi : B \oplus L \rightarrow B/A \) by \(b + l \rightarrow b + A \). [N dgnr]

Now \(\phi(b_1 + l_1 + b_2 + l_2) \)

\[= \phi(b_1 + b_2 + l_1 + l_2) \]

\[= (b_1 + b_2) + A \]

\[= b_1 + A + b_2 + A \]

\[= \phi(b_1 + l_1) + \phi(b_2 + l_2) \]

Again, \(\phi(n + l) \)

\[= \phi(n_1 + n_2 + n_3 + \ldots + n_k)(b + l) \]
\[\phi \{ n_1(b+1) + n_2(b+1) + \ldots + n_k(b+1) \} \]
\[= \phi \{ (n_1 b + n_1 l) + (n_2 b + n_2 l) + \ldots + (n_k b + n_k l) \} \]
\[= (n_1 b + A) + (n_2 b + A) + \ldots + (n_k b + A) \]
\[= (n_1 b + n_2 b + \ldots + n_k b) + A \]
\[= nb + A \]
\[= n(b + A) \]
\[= n\phi(b + l) \]

So \(\phi \) is an \(N \)-homomorphism.

\[\text{Ker} \phi = \{ x / \phi(x) = A \} \]
\[= \{ a + l / \phi(a + l) = A \} \]
\[= A + L \]

As \(A \leq B \) and \(B \cap L = 0 \), \(A \cap L = 0 \).

\[\therefore \text{Ker} \phi = A \oplus L \]

So \(B/A \cong (B \oplus L)/(A \oplus L) \).

Hence we get \(B/A \) also satisfies acc on its ideals.

In particular, every uniform ideal of \(E \) satisfies acc on its ideals.

Since if \(I \) is uniform ideal of \(E \) and \(J_1 \subseteq J_2 \subseteq \ldots \) an ascending chain of ideals of \(I \). As \(I \) is uniform, each \(J_i \leq I \).

\[\Rightarrow I/J_i \text{ satisfies acc on its ideals.} \]

\[\Rightarrow I \text{ satisfies acc on essential ideals. (by proposition 3.4.7)} \]
As each $J_i \leq J_j$, $\exists t$ such that $J_t = J_{t+1} \Rightarrow I$ satisfies acc on its ideals.

Now, let H be an ideal of E which is maximal with respect to the condition $H \cap \text{Soc}(E) = 0$.

Then $H \oplus \text{Soc}(E)$ is essential in E and $E/H \oplus \text{Soc}(E)$ satisfies acc on its ideals.

Hence for proving that $E/\text{Soc}(E)$ satisfies acc on its ideals it is enough to prove that H satisfies acc on its ideals.

We first show that H has finite Goldie dimension.

Assume that H contains an infinite direct sum $X = X_1 \oplus X_2 \oplus \ldots \ldots$ of non-zero ideals X_i.

Since, $\text{Soc}(X_i) = X_i \cap \text{Soc}(E)$, each X_i contains a proper essential ideal Y_i and

$Y = Y_1 \oplus Y_2 \oplus \ldots \ldots$ is an essential ideal of X.

By the above X/Y satisfies acc on its ideals.

But this is impossible because

$X/Y = X_1/Y_1 \oplus X_2/Y_2 \oplus \ldots \ldots$ with each X_i/Y_i non-zero.

This contradiction shows that H has finite Goldie dimension k (say). Then H contains k independent uniform ideals U_i such that $U = U_1 \oplus U_2 \oplus \ldots \ldots \oplus U_k$ is essential in H.

By the above U and H/U satisfies acc on ideals.

Hence H satisfies acc on ideals.

Proposition 3.4.11: if E is non-singular and Every singular homomorphic image of E is weakly Noetherian then E is almost weakly Noetherian.
Proof: As M is essential ideal of E and E is non-singular, E/M is singular. Again E/M is homomorphic image of E, by given condition E/M is weakly Noetherian.

Proposition 3.4.12: E is non-singular and almost weakly Noetherian and in E every weakly essential N-subgroup is essential then every singular homomorphic image of E is weakly Noetherian.

Proof: Let $f: E 	o L$ be an N-epimorphism and L is singular.

Now E is non-singular and $\ker f \leq E$, $L \cong E/\ker f$ singular,
so $\ker f \leq \text{soc} E$ by proposition 3.1.7.

Then $\text{Soc}(E) \subseteq \ker f$.

So by proposition 3.2.3 we get $L \cong E/\text{Soc}(E)$.

As E is almost weakly Noetherian, L is weakly Noetherian.

Corollary 3.4.13: The following conditions on an N-group E of a dgnr near-ring N are equivalent:

i. E is almost weakly Noetherian.

ii. E/M is weakly Noetherian for every essential ideal M of E.

iii. E has A.C.C. on essential ideals.

Moreover if E is non-singular, every weakly essential N-subgroup is essential
then above conditions are equivalent to

iv. Every singular homomorphic image of E is weakly Noetherian.

Proposition 3.4.14: Near-ring N is weakly Noetherian if $\bigoplus_{i \in I} E_i$ of injective N-groups is injective.
Proof: Let $\oplus_{i=1}^{\infty} E_i$ of commutative N-groups is injective and that

$I_1 \leq I_2 \leq \ldots$ be an ascending chain of left ideals in N.

Let $I = \bigcup_{i=1}^{\infty} I_i$.

If $a \in I$, then $a \in I_i$ for all but finitely many $I_i \in N$.

So there is an

$$f : I \to \oplus_{i=1}^{\infty} E(N/I_i)$$

defined via $\Pi_i f(a) = a + I_i \quad (a \in I)$.

By theorem 4.1.9, there is an $x \in \oplus_{i=1}^{\infty} E(N/I_i)$ such that $f(a) = ax$ for all $a \in I$. Now choose n such that $\Pi_{n+k} I(x) = 0$, $k = 0, 1, \ldots$.

So $I/ I_{n+k} = \Pi_{n+k}(f(I)) = \Pi_{n+k}(I_x) = L\Pi_{n+k}(x) = 0$

or, equivalently, $I_n = I_{n+k}$ for all $k = 0, 1, 2, \ldots$.

So, N is weakly Noetherian.

Definition 3.4.15: An N-subgroup U of N-group E is called pure in E if $IU = U \cap IE$ for each ideal I of N.

Example 3.4.16: $N = \{0, a, b, c\}$ is the Klein’s four group with multiplication

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>c</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
Then \((N, +, \cdot)\) is a near-ring. Here \(A = \{0, c\}\) is \(N\)-subgroup of \(N\) and \(B = \{0, b\}\) is ideal of \(N\).

Now \(BA = \{0\}\) and \(A \cap BN = \{0, c\} \cap \{0, b\} = \{0\}\). So \(BA = A \cap BN\). So, \(A\) is pure in \(N\).

Proposition 3.4.17: If \(N\) is non-singular, \(\text{Soc}N\) is pure and every injective right \(N\)-group is injective as an \(N/K\)-group for ideal \(K\) of \(N\) then direct sum of (countably many) injective hulls of simple weak singular left \(N\)-groups is injective implies \(N\) is an almost weakly Noetherian near-ring.

Proof: Let \(\{S_i\}_{i \in I}\) be a family of simple weak singular \(N/\text{Soc}(N)\)-groups.

Since a simple \(N\)-group is weak singular if and only if it is annihilated by \(\text{Soc}(N)\).

For let \(E\) is simple and weak singular. So \(Z_{\text{soc}}(E) = \{x \in E / Ix = 0, I \leq N\} = E\).

So \(x \in E \Rightarrow \exists I \leq N\) such that \(Ix = 0 \Rightarrow \text{Soc}(N)x = 0\). Thus \(E\) is annihilated by \(\text{Soc}(N)\).

Again let \(E\) is annihilated by \(\text{Soc}(N)\), we get \(\text{Soc}(N)E = 0\).

\[\Rightarrow \text{Soc}(N) \subseteq \text{Ann}(E).\]

Now we show \(\text{Ann}(E) = \{x \in N / xE = 0\}\) is essential ideal in \(N\).

If possible \(\text{Ann}(E)\) is not essential ideal in \(N\).

Then \(\text{Ann}(E) \cap J = 0\) for some non-zero ideal \(J\) of \(N\).

If \(\forall x \in E\) \(f : J \to Jx\), defined by \(f(j) = jx\), it is a well defined \(N\)-homomorphism.

\[f(j_1) \neq f(j_2) \Rightarrow (j_1)x \neq (j_2)x \Rightarrow (j_1 - j_2)x \neq 0 \Rightarrow (j_1 - j_2) \neq 0 \Rightarrow j_1 \neq j_2.\] So \(f\) is well-defined.
Next let \(j_1 \neq j_2 \Rightarrow (j_1 - j_2) \neq 0 \Rightarrow (j_1 - j_2)x \neq 0 \Rightarrow (j_1x) \neq (j_2x) \Rightarrow f(j_1) \neq f(j_2) \).

So \(f \) is one-one.

Again for every \(jx \in Jx \), \(\exists j \in J \) such that \(f(j) = jx \). So \(f \) is onto.

\[
f(j_1 + j_2) = (j_1 + j_2)x = (j_1x + j_2x) = f(j_1) + f(j_2),
\]

\[
f(nj) = (nj)x = n(jx) = nf(j).
\]

So \(f \) is \(N \)-isomorphism.

\(\Rightarrow \forall x \in E, J \ni Jx. \)

Again \(Z(N) = 0 \Rightarrow Z(J) = 0 \Rightarrow Z(Jx) = 0 \)

\(\Rightarrow \forall I \leq N, I(Jx) \neq 0 \Rightarrow \text{Soc}_{N}(Jx) \neq 0. \)

But \(Jx \subseteq E \) and \(\text{Soc}_{N}E = 0 \Rightarrow \text{Soc}_{N}(Jx) = 0 \), a contradiction.

So \(\text{Ann}(E) \) is essential ideal of \(N \), so \(E \) is weak singular.

It follows that each \(N_{S_i} \) is weak singular as \(N \)-group.

Since \(\text{Soc}_{N} \) is pure we get \(\text{Soc}_{(N_{S_i})}E_{(N_{S_i})} \cap N_{S_i} = \text{Soc}_{N}S_i, \forall i \in I. \)

As each \(N_{S_i} \) is annihilated by \(\text{Soc}(N), \)

\(\text{Soc}_{N}S_i = 0. \) So \(\text{Soc}_{(N_{S_i})}E_{(N_{S_i})} \cap N_{S_i} = 0. \) i.e. \(\forall x \in E_{(N_{S_i})}, \text{Soc}_{(N_{S_i})}x \cap N_{S_i} = 0. \)

\(E_{(N_{S_i})} \) is an essential extension of \(N_{S_i} \) and since \(\text{Soc}_{(N_{S_i})}x \) is \(N \)-subgroup of \(E_{(N_{S_i})} \) we get

\(\forall x \in E_{(N_{S_i})}, \text{Soc}_{(N_{S_i})}x = 0. \)

Thus \(E_{(N_{S_i})} \) is annihilated by \(\text{Soc}(N), \forall i \in I. \)

We claim that \(\forall i \in I, E_{(N_{S_i})} \) is weak singular as \(N \)-group.
For $x \in E_{(N)}$ with $x \in Z(E_{(N)})$ then $\forall I \leq N$, $Ix \neq 0 \Rightarrow \text{Ann}_N(x)$ is not essential in N.

So $\text{Ann}_N(x) \cap J = 0$ for some non-zero ideal J of N.

Since $J \cong Jx$ and $Z(N) = 0$, we infer that $Z(Jx) = 0$, whence $Jx \cap S_i = 0$

[Let $Jx \cap S_i \neq 0$.

$Z(Jx \cap S_i) = 0 \Rightarrow \forall I \leq W N, I(Jx \cap S_i) \neq 0 \Rightarrow \text{Soc} N(Jx \cap S_i) \neq 0$.

But $(Jx \cap S_i) \subseteq E_{(N)}$ and $\text{Soc} N.E_{(N)} = 0$, a contradiction].

This implies that $Jx = 0$.

So $J \subseteq \text{Ann}_N(x)$, a contradiction.

Now $E_{(N/\text{Soc}(N) S_i)} = \{ x \in E_{(N)} : \text{Soc}(N)x = 0 \} = E_{(N)}$ is injective as N-group.

By given condition $\oplus_{i \in I} E_i$ is injective as an N-group and hence injective as $N/\text{Soc}(N)$-group. This implies that $N/\text{Soc}(N)$ is weakly Noetherian by proposition 3.4.14.

For a distributively generated near-ring we get the following definition, note and three results.

Definition 3.4.18 [Pliz]: The Jacobson-radical of N-group E is the intersection of maximal ideals of E which is maximal as N-subgroup. We denote it by $J_2(E)$

Note 3.4.19 [Pliz]: The Jacobson-radical, $J_2(E)$ of N-group E contains all nilpotent N-subgroups of E.

Lemma 3.4.20: Let N be a GV- near-ring, then $Z(E) \cap J_2(E) = 0$, for every N-group E.

Proof: If $Z(E) = 0$, we are done.

Otherwise let $(0 \neq) x \in Z(E)$.

By Zorn's lemma, the set of all ideals M of E with $x \in M$, has a maximal member L.

The quotient N-group $S = (N + L)/L$ is simple and singular, therefore E-injective.
Let $\bar{y} \in (Nx + L)/L$ such that $\bar{y} = nx + 1 + L$.

Now for some essential N-subgroup I in N,

$Iy = \left\{ \frac{n'y}{n' \in I} \right\}$

$= \left\{ \Sigma_{i=1}^{k} s_i (nx + L) / n' = (\Sigma_{i=1}^{k} s_i) \in I \right\}$

$= \left\{ s_1(nx + L) + s_2(nx + L) + \ldots + s_k(nx + L) / n' \in I \right\}$

$= \left\{ s_1 nx + L + s_2 nx + L + \ldots + s_k nx + L / n' \in I \right\}$

$= \left\{ (s_1 nx + s_2 nx + \ldots + s_k nx) + L / n' \in I \right\}$ [since $s_i nx \in L$ as $s_i \in N$]

$= \left\{ L \right\} = \bar{0}$.

So $\bar{y} \in Z((Nx + L)/L)$.

This means that the natural map of Nx onto S extends to all of E.

The kernel of this extension map is a maximal ideal of E which does not contain x. Whence x can not be in J_2E.

So $Z(E) \cap J_2(E) = 0$

Theorem 3.4.21: If N is a GV near-ring with A.C.C. on essential ideals and if finite intersection of essential N-subgroups of N is distributively generated, then $Z(N) = 0$. In particular, if N is S^3 I near-ring with unity then it is non-singular.

Proof: Let $x \in Z(N)$.

Then $\text{Ann}_N(x) \subseteq \text{Ann}_N(x^2) \subseteq \ldots$ is an ascending chain of essential left ideals in N,

since $\text{Ann}_N(x) \leq N$.

So for some $t \in I^+$, $\text{Ann}_N(x^{t+1}) \leq N$ by proposition 1.3.3.

We claim $x^t = 0$.

Suppose $x^t \neq 0$.

Then we get $\text{Ann}_N(x^{t+1}) \cap Nx^t \neq 0$.

As N has A.C.C. on essential left ideals $\exists t \in I^+$ such that $\text{Ann}_N(x^t) = \text{Ann}_N(x^{t+1})$, whence we get $\text{Ann}_N(x^{t+k}) = \text{Ann}_N(x^t)$ for all $k \in I^+$.

Let $y = n x^t (\neq 0) \in \text{Ann}_N(x^{t+1}) \cap Nx^t$ for $n \in N$.

Now $y \in \text{Ann}_N(x^t) \Rightarrow y x^t = 0 \Rightarrow n x^{2t} = 0 \Rightarrow n \in \text{Ann}_N(x^{2t}) = \text{Ann}_N(x^t) \Rightarrow y = n x^t = 0$, a contradiction.

i.e. $y \in \text{Ann}_N(x^{t+1}) \Rightarrow y \not\in \text{Ann}_N(x^t) \Rightarrow \text{Ann}_N(x^t) \neq \text{Ann}_N(x^{t+1})$, a contradiction.

Thus $Z(N)$ contains nilpotent elements.

As finite intersection of essential N-subgroups of N is distributively generated, $Z(N)$ is N-subgroup of N. [by proposition 2.1.14]

So $J_2(N)$ contains $Z(N)$.

By lemma 3.4.20, $Z(N) = 0$.

For S^1 near-ring N, $N/\text{Soc}(N)$ is weakly Noetherian by proposition 3.4.5. Again from proposition 3.4.9, (considering N as N-group) it follows that N has acc on essential ideals when we get N is non singular.

Theorem 3.4.22: If $\{N^i\}_{i \in \text{Soc}(N)}$ is an independent family of normal N-subgroups of $N/\text{Soc}(N)$-group E, direct sum of E-injective $N/\text{Soc}(N)$-groups is commutative N-group, then $N/1$ is weakly Noetherian $V_e N$-group for every essential ideal I of N implies $N/\text{Soc}(N)$ is weakly Noetherian V_e near-ring.

Proof: $N/1$ is weakly Noetherian for every essential ideal I of N implies $N/\text{Soc}(N)$ is weakly Noetherian as proposition 3.4.8.
Let L be a strictly semi-simple $N/Soc(N)$-group.

Then as N dgnr, L is a semi-simple $N/Soc(N)$-group.

$I/ Soc(N)$ an ideal of $N/Soc(N)$ and $f: I/ Soc(N) \rightarrow L$ a non-zero N-homomorphism.

Let $Ker f = K/ Soc(N)$.

Now K is essential in N. For if $K \cap J = 0$ for some non-zero ideal J of N then $J \cong \frac{J + K}{K}$ and since the latter is isomorphic to an ideal of L, it follows that for some ideal $I_1 \neq 0$ and contained in J that $I_1 \subseteq L$, hence $I_1 \subseteq Soc(N) \subseteq K$, a contradiction.

Thus N/K is a weakly Noetherian Vc N-group.

If $N \rightarrow N/ Soc(N)$ is canonical quotient map, then $(N/ Soc(N))/(K/ Soc(N))$ is a weakly Noetherian Vc N-group. Proposition 3.4.2, yields a map of $\frac{N}{Soc(N)}$ into L. So, L is $\frac{N}{Soc(N)}$ injective.

Thus by corollary 3.4.4, $\frac{N}{Soc(N)}$ is weakly Noetherian Vc near-ring.

\textit{If every injective right N/K-group is injective as an N-group we get the following result.}

Theorem 3.4.23: For a near-ring N with unity the following conditions are equivalent:

i. N is S^2S_0I-near-ring.

ii. $\frac{N}{Soc(N)}$ is weakly Noetherian Vc near-ring.

Proof: i. \Rightarrow ii. By corollary 3.4.4, we have to show that every strictly semi-simple $N/Soc(N)$-group E is injective.

If E is $N/Soc(N)$-group then $SocN.E = 0$.

Now $Ann(E) = \{ x \in N / xE = 0 \}$ is essential in N.

Again as $Soc(N).E = 0$, $Soc(N) \subseteq Ann(E)$. Thus $Soc(N) = Ann(E)$, that is E is annihilated by $Soc(N)$. Again $Z_w(E) = \{ x \in E / lx = 0, I \leq_w N \}$ and we get E is weak singular.
For if not for some $x \in E$, $\forall I \leq E N$, $Ix \neq 0$, that is $\text{Soc}N.x \neq 0$, a contradiction.

By (i.) E is injective as an N-group and hence injective as an $N/\text{Soc}(N)$-group.

(ii. \Rightarrow i.) Let L be a semi-simple weak singular N-group.

Then L can be regarded as $N/\text{Soc}(N)$-group and hence injective as $N/\text{Soc}(N)$-group by (ii).

So L is injective as N-group.

For near-ring N with identity and M unital N-group if for every right ideal U of N and every N-homomorphism $f : U \rightarrow M$, there exists an element m in M such that $f(a) = ma$ for all a in U implies M is injective then we get the following results.

Proposition 3.4.24: $\bigoplus_{i \in I} E_i$ of injective N-groups is injective if near-ring N is weakly Noetherian.

Proof: Let N be weakly Noetherian, I be an ideal of N and $f : I \rightarrow \bigoplus_A E_\alpha$.

Then since I is finitely generated, $\text{Im}f$ is contained in $\bigoplus_{F \subseteq A} E_\alpha$ for some finite subset $F \subseteq A$.

So $\bigoplus_{F \subseteq A} E_\alpha$ is injective since finite direct sum is injective by theorem 3.3.7.

By theorem 4.1.9, as $\bigoplus_{F \subseteq A} E_\alpha$ is injective then for every right ideal U of N and every N-homomorphism $f : U \rightarrow \bigoplus_{F \subseteq A} E_\alpha$, there exists an element m in $\bigoplus_{F \subseteq A} E_\alpha$ such that $f(a) = ma$ for all a in U. But $m \in \bigoplus_A E_\alpha$ also. So for every right ideal U of N and every N-homomorphism $f : U \rightarrow \bigoplus_A E_\alpha$, there exists an element m in $\bigoplus_A E_\alpha$ such that $f(a) = ma$ for all a in U.

Then $\bigoplus_A E_\alpha$ is injective.

Proposition 3.4.25: For any near-ring N the following conditions are equivalent:

i. N is an almost weakly Noetherian near-ring.

ii. N/I is weakly Noetherian for every essential left ideal I of N.
iii. N has A.C.C. on essential left ideals.

Moreover if $Z(nN) = 0$, N dgnr and every injective right N/K-group is injective as an N-group for ideal K of N we get

iv. Direct sum of (countably many) weak singular injective left N-groups is injective.

Again if $Z(nN) = 0$ and every injective right N-group is injective as an N/K-group for ideal K of N where SocN is pure we get

v. Direct sum of (Countably many) injective hulls of simple weak singular left N-groups is injective.

Proof: Equivalence between (i), (ii), (iii) is clear from above corollary 3.4.13, considering N as N-group.

(i) \Rightarrow (iv). Let $\{E_i\}_{i \in I}$ be a family of weak singular left N-groups. Since $Z_w(E_i) = \{x \in E_i / \exists x = 0 \text{ for } x <_{eiN}E_i\} = E_i$, we get $\text{SocN}.E_i = 0$. So each E_i can be regarded as an N/Soc(N)-groups. Since N/Soc(N) is weakly Noetherian, $\bigoplus_{i \in I} E_i$ is injective as an N/Soc(N)-group by proposition 3.4.24, hence $\bigoplus_{i \in I} E_i$ is injective as an N-group.

(iv) \Rightarrow (v). clear.

(v) \Rightarrow (i). Proposition 3.4.17

If every injective right N/K-group is injective as an N-group we get the following results:

Theorem 3.4.26: For a dgnr near-ring N, then the following conditions are equivalent:

i. N is S^2S_{weak}-near-ring.

ii. $N/\text{Soc}(N)$ is weakly Noetherian V_c near-ring.

iii. N is GV-near-ring and direct sum of weak singular injective N-groups is injective.
iv. N is GV-near-ring and N has A.C.C. on essential left ideals.

Proof: i. \Leftrightarrow ii. From theorem 3.4.23

ii. \Rightarrow iii. From equivalence between (i) and (ii) clearly N is a GV-near-ring.

$N/\text{Soc}(N)$ is weakly Noetherian.

Let $\{E_i\}_{i \in I}$ be a family of weak singular left N-groups. Clearly each E_i can be regarded as an $N/\text{Soc}(N)$-groups.

Since $N/\text{Soc}(N)$ is weakly Noetherian, so by proposition 3.4.24, $\bigoplus_{i \in I} E_i$ is injective as an $N/\text{Soc}(N)$-group. So $\bigoplus_{i \in I} E_i$ is injective as an N-group.

iii. \Rightarrow i. is obvious.

Theorem 3.4.27: For a dgnr GV near-ring N direct sum of weak singular injective N-groups is injective implies N has A.C.C. on essential left ideals.

Proof: Since (iii) is equivalent to (ii) in theorem 3.4.26, we can conclude that N has A.C.C. on essential ideals.

Theorem 3.4.28: For a dgnr GV near-ring N if every injective right N/K-group is injective as an N-group for ideal K of N and N has A.C.C. on essential left ideals then direct sum of weak singular injective N-groups is injective.

Proof: From theorem 3.4.21, $Z(N) = 0$.

From proposition 3.4.25 direct sum of weak singular injective N-groups is injective.